Update src/streamlit_app.py
Browse files- src/streamlit_app.py +6 -23
src/streamlit_app.py
CHANGED
@@ -1,9 +1,6 @@
|
|
1 |
import torch
|
2 |
import os
|
3 |
import streamlit as st
|
4 |
-
from pydub import AudioSegment
|
5 |
-
import numpy as np
|
6 |
-
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
7 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
8 |
|
9 |
os.environ["TRANSFORMERS_CACHE"] = "/app/.cache/huggingface"
|
@@ -11,20 +8,9 @@ os.environ["HF_HOME"] = "/app/.cache/huggingface"
|
|
11 |
os.environ["TORCH_HOME"] = "/app/.cache/torch"
|
12 |
hf_token = os.getenv("HateSpeechMujtabatoken")
|
13 |
|
14 |
-
whisper_processor = WhisperProcessor.from_pretrained("openai/whisper-tiny", token=hf_token)
|
15 |
-
whisper_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny", token=hf_token)
|
16 |
text_model = AutoModelForSequenceClassification.from_pretrained("GroNLP/hateBERT", token=hf_token)
|
17 |
tokenizer = AutoTokenizer.from_pretrained("GroNLP/hateBERT", token=hf_token)
|
18 |
|
19 |
-
def transcribe(audio_path):
|
20 |
-
audio = AudioSegment.from_file(audio_path, format="opus")
|
21 |
-
audio = audio.set_channels(1).set_frame_rate(16000)
|
22 |
-
samples = np.array(audio.get_array_of_samples()).astype(np.float32) / (2**15)
|
23 |
-
input_features = whisper_processor(samples, sampling_rate=16000, return_tensors="pt").input_features
|
24 |
-
predicted_ids = whisper_model.generate(input_features)
|
25 |
-
transcription = whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
26 |
-
return transcription
|
27 |
-
|
28 |
def extract_text_features(text):
|
29 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
30 |
outputs = text_model(**inputs)
|
@@ -32,16 +18,13 @@ def extract_text_features(text):
|
|
32 |
return "Hate Speech" if predicted_class >= 1 else "Not Hate Speech"
|
33 |
|
34 |
def predict(text_input):
|
35 |
-
|
36 |
-
|
37 |
-
prediction = extract_text_features(text_input
|
38 |
-
|
39 |
-
return f"Predicted: {prediction}"
|
40 |
-
else:
|
41 |
-
return f"Predicted: {prediction} \n\n(Transcribed: {transcribed_text})"
|
42 |
|
43 |
st.title("Hate Speech Detector")
|
44 |
-
text_input = st.text_input("Enter text
|
45 |
-
if st.button("
|
46 |
result = predict(text_input)
|
47 |
st.success(result)
|
|
|
1 |
import torch
|
2 |
import os
|
3 |
import streamlit as st
|
|
|
|
|
|
|
4 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
5 |
|
6 |
os.environ["TRANSFORMERS_CACHE"] = "/app/.cache/huggingface"
|
|
|
8 |
os.environ["TORCH_HOME"] = "/app/.cache/torch"
|
9 |
hf_token = os.getenv("HateSpeechMujtabatoken")
|
10 |
|
|
|
|
|
11 |
text_model = AutoModelForSequenceClassification.from_pretrained("GroNLP/hateBERT", token=hf_token)
|
12 |
tokenizer = AutoTokenizer.from_pretrained("GroNLP/hateBERT", token=hf_token)
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
def extract_text_features(text):
|
15 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
16 |
outputs = text_model(**inputs)
|
|
|
18 |
return "Hate Speech" if predicted_class >= 1 else "Not Hate Speech"
|
19 |
|
20 |
def predict(text_input):
|
21 |
+
if not text_input:
|
22 |
+
return "Please enter some text."
|
23 |
+
prediction = extract_text_features(text_input)
|
24 |
+
return f"Predicted: {prediction}"
|
|
|
|
|
|
|
25 |
|
26 |
st.title("Hate Speech Detector")
|
27 |
+
text_input = st.text_input("Enter text:")
|
28 |
+
if st.button("Predict"):
|
29 |
result = predict(text_input)
|
30 |
st.success(result)
|