Update src/streamlit_app.py
Browse files- src/streamlit_app.py +4 -11
src/streamlit_app.py
CHANGED
@@ -10,18 +10,12 @@ os.environ["HF_HOME"] = "/app/.cache/huggingface"
|
|
10 |
os.environ["TORCH_HOME"] = "/app/.cache/torch"
|
11 |
hf_token = os.getenv("HateSpeechMujtabatoken")
|
12 |
|
13 |
-
|
14 |
-
import torchaudio
|
15 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
16 |
-
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
17 |
-
import streamlit as st
|
18 |
-
|
19 |
-
whisper_processor = WhisperProcessor.from_pretrained("Hate-speech-CNERG/bert-base-uncased-hatexplain")
|
20 |
whisper_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
|
21 |
text_model = AutoModelForSequenceClassification.from_pretrained("Hate-speech-CNERG/bert-base-uncased-hatexplain")
|
22 |
tokenizer = AutoTokenizer.from_pretrained("Hate-speech-CNERG/bert-base-uncased-hatexplain")
|
23 |
|
24 |
-
label_map = {0: "Not Hate Speech", 1: "Hate Speech"}
|
25 |
|
26 |
def transcribe(audio_path):
|
27 |
waveform, sample_rate = torchaudio.load(audio_path)
|
@@ -44,11 +38,10 @@ def predict_hate_speech(audio_path=None, text=None):
|
|
44 |
text_input = text
|
45 |
else:
|
46 |
return "No input provided"
|
47 |
-
|
48 |
prediction = extract_text_features(text_input)
|
49 |
return prediction
|
50 |
|
51 |
-
st.title("Hate Speech Detector
|
52 |
audio_file = st.file_uploader("Upload an audio file", type=["wav", "mp3", "flac", "ogg", "opus"])
|
53 |
text_input = st.text_input("Optional text input")
|
54 |
if st.button("Predict"):
|
@@ -61,4 +54,4 @@ if st.button("Predict"):
|
|
61 |
prediction = predict_hate_speech(text=text_input)
|
62 |
st.success(prediction)
|
63 |
else:
|
64 |
-
st.warning("Please upload an audio file or enter text.")
|
|
|
10 |
os.environ["TORCH_HOME"] = "/app/.cache/torch"
|
11 |
hf_token = os.getenv("HateSpeechMujtabatoken")
|
12 |
|
13 |
+
whisper_processor = WhisperProcessor.from_pretrained("openai/whisper-small")
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
whisper_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
|
15 |
text_model = AutoModelForSequenceClassification.from_pretrained("Hate-speech-CNERG/bert-base-uncased-hatexplain")
|
16 |
tokenizer = AutoTokenizer.from_pretrained("Hate-speech-CNERG/bert-base-uncased-hatexplain")
|
17 |
|
18 |
+
label_map = {0: "Not Hate Speech", 1: "Hate Speech", 2: "Hate Speech"}
|
19 |
|
20 |
def transcribe(audio_path):
|
21 |
waveform, sample_rate = torchaudio.load(audio_path)
|
|
|
38 |
text_input = text
|
39 |
else:
|
40 |
return "No input provided"
|
|
|
41 |
prediction = extract_text_features(text_input)
|
42 |
return prediction
|
43 |
|
44 |
+
st.title("Hate Speech Detector")
|
45 |
audio_file = st.file_uploader("Upload an audio file", type=["wav", "mp3", "flac", "ogg", "opus"])
|
46 |
text_input = st.text_input("Optional text input")
|
47 |
if st.button("Predict"):
|
|
|
54 |
prediction = predict_hate_speech(text=text_input)
|
55 |
st.success(prediction)
|
56 |
else:
|
57 |
+
st.warning("Please upload an audio file or enter text.")
|