|
import torch |
|
import torchaudio |
|
import os |
|
import streamlit as st |
|
from transformers import WhisperProcessor, WhisperForConditionalGeneration |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
|
|
os.environ["TRANSFORMERS_CACHE"] = "/app/.cache/huggingface" |
|
os.environ["HF_HOME"] = "/app/.cache/huggingface" |
|
os.environ["TORCH_HOME"] = "/app/.cache/torch" |
|
hf_token = os.getenv("HateSpeechMujtabatoken") |
|
|
|
import torch |
|
import torchaudio |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
from transformers import WhisperProcessor, WhisperForConditionalGeneration |
|
import streamlit as st |
|
|
|
whisper_processor = WhisperProcessor.from_pretrained("Hate-speech-CNERG/bert-base-uncased-hatexplain") |
|
whisper_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small") |
|
text_model = AutoModelForSequenceClassification.from_pretrained("Hate-speech-CNERG/bert-base-uncased-hatexplain") |
|
tokenizer = AutoTokenizer.from_pretrained("Hate-speech-CNERG/bert-base-uncased-hatexplain") |
|
|
|
label_map = {0: "Not Hate Speech", 1: "Hate Speech"} |
|
|
|
def transcribe(audio_path): |
|
waveform, sample_rate = torchaudio.load(audio_path) |
|
input_features = whisper_processor(waveform.squeeze().numpy(), sampling_rate=sample_rate, return_tensors="pt").input_features |
|
predicted_ids = whisper_model.generate(input_features) |
|
transcription = whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True)[0] |
|
return transcription |
|
|
|
def extract_text_features(text): |
|
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512) |
|
outputs = text_model(**inputs) |
|
pred_label = outputs.logits.argmax(dim=1).item() |
|
return label_map.get(pred_label, "Unknown") |
|
|
|
def predict_hate_speech(audio_path=None, text=None): |
|
if audio_path: |
|
transcription = transcribe(audio_path) |
|
text_input = text if text else transcription |
|
elif text: |
|
text_input = text |
|
else: |
|
return "No input provided" |
|
|
|
prediction = extract_text_features(text_input) |
|
return prediction |
|
|
|
st.title("Hate Speech Detector with Audio and Text") |
|
audio_file = st.file_uploader("Upload an audio file", type=["wav", "mp3", "flac", "ogg", "opus"]) |
|
text_input = st.text_input("Optional text input") |
|
if st.button("Predict"): |
|
if audio_file is not None: |
|
with open("temp_audio.wav", "wb") as f: |
|
f.write(audio_file.read()) |
|
prediction = predict_hate_speech("temp_audio.wav", text_input) |
|
st.success(prediction) |
|
elif text_input: |
|
prediction = predict_hate_speech(text=text_input) |
|
st.success(prediction) |
|
else: |
|
st.warning("Please upload an audio file or enter text.") |
|
|