Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,143 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
""
|
7 |
-
|
|
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
response
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
-
)
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
|
|
63 |
if __name__ == "__main__":
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py - Complete Chatbot with Fine-tuning and Deployment
|
2 |
import gradio as gr
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline, Trainer, TrainingArguments
|
4 |
+
from datasets import load_dataset, Dataset
|
5 |
+
import torch
|
6 |
+
import pandas as pd
|
7 |
+
from huggingface_hub import notebook_login, Repository
|
8 |
|
9 |
+
# Configuration
|
10 |
+
MODEL_NAME = "t5-small" # Lightweight model good for chatbots
|
11 |
+
DATASET_NAME = "AmazonQA"
|
12 |
+
FINETUNED_MODEL_NAME = "MujtabaShopifyChatbot"
|
13 |
+
HF_TOKEN = "your_huggingface_token" # Replace with your token
|
14 |
|
15 |
+
# --- Step 1: Load and Prepare Dataset ---
|
16 |
+
def load_and_preprocess_data():
|
17 |
+
print("Loading AmazonQA dataset...")
|
18 |
+
dataset = load_dataset(DATASET_NAME)
|
19 |
+
|
20 |
+
# Convert to pandas for easier processing
|
21 |
+
df = pd.DataFrame(dataset['train'])
|
22 |
+
|
23 |
+
# Preprocessing - create consistent Q&A pairs
|
24 |
+
df = df[['question', 'answer']].dropna()
|
25 |
+
df = df[:5000] # Use subset for faster training
|
26 |
+
|
27 |
+
# Convert back to Hugging Face Dataset
|
28 |
+
processed_dataset = Dataset.from_pandas(df)
|
29 |
+
|
30 |
+
# Split into train and eval
|
31 |
+
split_dataset = processed_dataset.train_test_split(test_size=0.1)
|
32 |
+
return split_dataset
|
33 |
|
34 |
+
# --- Step 2: Tokenization ---
|
35 |
+
def tokenize_data(dataset):
|
36 |
+
print("Tokenizing data...")
|
37 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
38 |
+
|
39 |
+
def preprocess_function(examples):
|
40 |
+
inputs = [f"question: {q} answer:" for q in examples["question"]]
|
41 |
+
targets = examples["answer"]
|
42 |
+
|
43 |
+
model_inputs = tokenizer(inputs, max_length=128, truncation=True)
|
44 |
+
labels = tokenizer(targets, max_length=128, truncation=True)
|
45 |
+
|
46 |
+
model_inputs["labels"] = labels["input_ids"]
|
47 |
+
return model_inputs
|
48 |
|
49 |
+
tokenized_dataset = dataset.map(preprocess_function, batched=True)
|
50 |
+
return tokenized_dataset
|
|
|
|
|
|
|
51 |
|
52 |
+
# --- Step 3: Fine-tuning ---
|
53 |
+
def fine_tune_model(tokenized_dataset):
|
54 |
+
print("Fine-tuning model...")
|
55 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
|
56 |
+
|
57 |
+
training_args = TrainingArguments(
|
58 |
+
output_dir="./results",
|
59 |
+
evaluation_strategy="epoch",
|
60 |
+
learning_rate=2e-5,
|
61 |
+
per_device_train_batch_size=8,
|
62 |
+
per_device_eval_batch_size=8,
|
63 |
+
num_train_epochs=3,
|
64 |
+
weight_decay=0.01,
|
65 |
+
save_total_limit=3,
|
66 |
+
fp16=torch.cuda.is_available(),
|
67 |
+
push_to_hub=True,
|
68 |
+
hub_model_id=FINETUNED_MODEL_NAME,
|
69 |
+
hub_token=HF_TOKEN,
|
70 |
+
)
|
71 |
+
|
72 |
+
trainer = Trainer(
|
73 |
+
model=model,
|
74 |
+
args=training_args,
|
75 |
+
train_dataset=tokenized_dataset["train"],
|
76 |
+
eval_dataset=tokenized_dataset["test"],
|
77 |
+
)
|
78 |
+
|
79 |
+
trainer.train()
|
80 |
+
trainer.push_to_hub()
|
81 |
+
return model
|
82 |
|
83 |
+
# --- Step 4: Chatbot Interface ---
|
84 |
+
def initialize_chatbot():
|
85 |
+
print("Loading chatbot...")
|
86 |
+
try:
|
87 |
+
# Try loading fine-tuned model first
|
88 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(FINETUNED_MODEL_NAME)
|
89 |
+
tokenizer = AutoTokenizer.from_pretrained(FINETUNED_MODEL_NAME)
|
90 |
+
except:
|
91 |
+
# Fallback to pre-trained model
|
92 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
|
93 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
94 |
+
|
95 |
+
chatbot_pipe = pipeline("text2text-generation", model=model, tokenizer=tokenizer)
|
96 |
+
return chatbot_pipe
|
97 |
|
98 |
+
def generate_response(message, history):
|
99 |
+
# Format the input for the model
|
100 |
+
input_text = f"question: {message} answer:"
|
101 |
+
|
102 |
+
# Generate response
|
103 |
+
response = chatbot_pipe(input_text, max_length=128, do_sample=True)[0]['generated_text']
|
104 |
+
|
105 |
+
# Clean up the response
|
106 |
+
if "answer:" in response:
|
107 |
+
response = response.split("answer:")[-1].strip()
|
108 |
+
return response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
+
# --- Step 5: Deployment ---
|
111 |
+
def deploy_chatbot():
|
112 |
+
print("Launching chatbot interface...")
|
113 |
+
demo = gr.ChatInterface(
|
114 |
+
fn=generate_response,
|
115 |
+
title="Mujtaba's Shopify Chatbot",
|
116 |
+
description="Ask me anything about products, shipping, or returns!",
|
117 |
+
examples=[
|
118 |
+
"What's the return policy?",
|
119 |
+
"How long does shipping take to Karachi?",
|
120 |
+
"Do you have size charts for kurtas?"
|
121 |
+
],
|
122 |
+
theme="soft"
|
123 |
+
)
|
124 |
+
return demo
|
125 |
|
126 |
+
# --- Main Execution ---
|
127 |
if __name__ == "__main__":
|
128 |
+
# Login to Hugging Face Hub
|
129 |
+
notebook_login()
|
130 |
+
|
131 |
+
# Dataset preparation
|
132 |
+
dataset = load_and_preprocess_data()
|
133 |
+
tokenized_dataset = tokenize_data(dataset)
|
134 |
+
|
135 |
+
# Fine-tuning (uncomment to run)
|
136 |
+
# fine_tune_model(tokenized_dataset)
|
137 |
+
|
138 |
+
# Initialize chatbot
|
139 |
+
chatbot_pipe = initialize_chatbot()
|
140 |
+
|
141 |
+
# Launch interface
|
142 |
+
demo = deploy_chatbot()
|
143 |
+
demo.launch(share=True)
|