mojad121 commited on
Commit
c41964f
·
verified ·
1 Parent(s): bff2770

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +132 -53
app.py CHANGED
@@ -1,64 +1,143 @@
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
 
8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
 
 
 
 
 
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
- response = ""
 
 
 
 
 
 
 
 
 
 
 
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
 
 
63
  if __name__ == "__main__":
64
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # app.py - Complete Chatbot with Fine-tuning and Deployment
2
  import gradio as gr
3
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline, Trainer, TrainingArguments
4
+ from datasets import load_dataset, Dataset
5
+ import torch
6
+ import pandas as pd
7
+ from huggingface_hub import notebook_login, Repository
8
 
9
+ # Configuration
10
+ MODEL_NAME = "t5-small" # Lightweight model good for chatbots
11
+ DATASET_NAME = "AmazonQA"
12
+ FINETUNED_MODEL_NAME = "MujtabaShopifyChatbot"
13
+ HF_TOKEN = "your_huggingface_token" # Replace with your token
14
 
15
+ # --- Step 1: Load and Prepare Dataset ---
16
+ def load_and_preprocess_data():
17
+ print("Loading AmazonQA dataset...")
18
+ dataset = load_dataset(DATASET_NAME)
19
+
20
+ # Convert to pandas for easier processing
21
+ df = pd.DataFrame(dataset['train'])
22
+
23
+ # Preprocessing - create consistent Q&A pairs
24
+ df = df[['question', 'answer']].dropna()
25
+ df = df[:5000] # Use subset for faster training
26
+
27
+ # Convert back to Hugging Face Dataset
28
+ processed_dataset = Dataset.from_pandas(df)
29
+
30
+ # Split into train and eval
31
+ split_dataset = processed_dataset.train_test_split(test_size=0.1)
32
+ return split_dataset
33
 
34
+ # --- Step 2: Tokenization ---
35
+ def tokenize_data(dataset):
36
+ print("Tokenizing data...")
37
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
38
+
39
+ def preprocess_function(examples):
40
+ inputs = [f"question: {q} answer:" for q in examples["question"]]
41
+ targets = examples["answer"]
42
+
43
+ model_inputs = tokenizer(inputs, max_length=128, truncation=True)
44
+ labels = tokenizer(targets, max_length=128, truncation=True)
45
+
46
+ model_inputs["labels"] = labels["input_ids"]
47
+ return model_inputs
48
 
49
+ tokenized_dataset = dataset.map(preprocess_function, batched=True)
50
+ return tokenized_dataset
 
 
 
51
 
52
+ # --- Step 3: Fine-tuning ---
53
+ def fine_tune_model(tokenized_dataset):
54
+ print("Fine-tuning model...")
55
+ model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
56
+
57
+ training_args = TrainingArguments(
58
+ output_dir="./results",
59
+ evaluation_strategy="epoch",
60
+ learning_rate=2e-5,
61
+ per_device_train_batch_size=8,
62
+ per_device_eval_batch_size=8,
63
+ num_train_epochs=3,
64
+ weight_decay=0.01,
65
+ save_total_limit=3,
66
+ fp16=torch.cuda.is_available(),
67
+ push_to_hub=True,
68
+ hub_model_id=FINETUNED_MODEL_NAME,
69
+ hub_token=HF_TOKEN,
70
+ )
71
+
72
+ trainer = Trainer(
73
+ model=model,
74
+ args=training_args,
75
+ train_dataset=tokenized_dataset["train"],
76
+ eval_dataset=tokenized_dataset["test"],
77
+ )
78
+
79
+ trainer.train()
80
+ trainer.push_to_hub()
81
+ return model
82
 
83
+ # --- Step 4: Chatbot Interface ---
84
+ def initialize_chatbot():
85
+ print("Loading chatbot...")
86
+ try:
87
+ # Try loading fine-tuned model first
88
+ model = AutoModelForSeq2SeqLM.from_pretrained(FINETUNED_MODEL_NAME)
89
+ tokenizer = AutoTokenizer.from_pretrained(FINETUNED_MODEL_NAME)
90
+ except:
91
+ # Fallback to pre-trained model
92
+ model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
93
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
94
+
95
+ chatbot_pipe = pipeline("text2text-generation", model=model, tokenizer=tokenizer)
96
+ return chatbot_pipe
97
 
98
+ def generate_response(message, history):
99
+ # Format the input for the model
100
+ input_text = f"question: {message} answer:"
101
+
102
+ # Generate response
103
+ response = chatbot_pipe(input_text, max_length=128, do_sample=True)[0]['generated_text']
104
+
105
+ # Clean up the response
106
+ if "answer:" in response:
107
+ response = response.split("answer:")[-1].strip()
108
+ return response
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
109
 
110
+ # --- Step 5: Deployment ---
111
+ def deploy_chatbot():
112
+ print("Launching chatbot interface...")
113
+ demo = gr.ChatInterface(
114
+ fn=generate_response,
115
+ title="Mujtaba's Shopify Chatbot",
116
+ description="Ask me anything about products, shipping, or returns!",
117
+ examples=[
118
+ "What's the return policy?",
119
+ "How long does shipping take to Karachi?",
120
+ "Do you have size charts for kurtas?"
121
+ ],
122
+ theme="soft"
123
+ )
124
+ return demo
125
 
126
+ # --- Main Execution ---
127
  if __name__ == "__main__":
128
+ # Login to Hugging Face Hub
129
+ notebook_login()
130
+
131
+ # Dataset preparation
132
+ dataset = load_and_preprocess_data()
133
+ tokenized_dataset = tokenize_data(dataset)
134
+
135
+ # Fine-tuning (uncomment to run)
136
+ # fine_tune_model(tokenized_dataset)
137
+
138
+ # Initialize chatbot
139
+ chatbot_pipe = initialize_chatbot()
140
+
141
+ # Launch interface
142
+ demo = deploy_chatbot()
143
+ demo.launch(share=True)