Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,72 +1,103 @@
|
|
1 |
-
# app.py - Complete Chatbot with Fine-tuning and Deployment
|
2 |
import gradio as gr
|
3 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline, Trainer, TrainingArguments
|
4 |
from datasets import load_dataset, Dataset
|
5 |
import torch
|
6 |
import pandas as pd
|
7 |
-
from huggingface_hub import notebook_login
|
|
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
DATASET_NAME = "AmazonQA"
|
12 |
FINETUNED_MODEL_NAME = "MujtabaShopifyChatbot"
|
13 |
-
HF_TOKEN = "your_huggingface_token"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
# --- Step 1: Load and Prepare Dataset ---
|
16 |
def load_and_preprocess_data():
|
17 |
-
print("Loading
|
18 |
dataset = load_dataset(DATASET_NAME)
|
|
|
19 |
|
20 |
-
# Convert to pandas for easier processing
|
21 |
df = pd.DataFrame(dataset['train'])
|
22 |
|
23 |
-
|
|
|
|
|
|
|
|
|
24 |
df = df[['question', 'answer']].dropna()
|
25 |
-
df = df[:5000]
|
26 |
|
27 |
-
|
28 |
-
processed_dataset = Dataset.from_pandas(df)
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
return
|
33 |
|
34 |
-
# --- Step 2: Tokenization ---
|
35 |
def tokenize_data(dataset):
|
36 |
-
print("Tokenizing data
|
37 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
38 |
|
39 |
def preprocess_function(examples):
|
40 |
inputs = [f"question: {q} answer:" for q in examples["question"]]
|
41 |
-
targets = examples["answer"]
|
42 |
|
43 |
-
model_inputs = tokenizer(
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
model_inputs["labels"] = labels["input_ids"]
|
47 |
return model_inputs
|
48 |
|
49 |
-
|
50 |
-
return tokenized_dataset
|
51 |
|
52 |
-
# --- Step 3: Fine-tuning ---
|
53 |
def fine_tune_model(tokenized_dataset):
|
54 |
-
print("
|
|
|
55 |
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
|
56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
training_args = TrainingArguments(
|
58 |
output_dir="./results",
|
59 |
-
|
60 |
-
learning_rate=
|
61 |
-
per_device_train_batch_size=
|
62 |
-
per_device_eval_batch_size=
|
63 |
num_train_epochs=3,
|
64 |
weight_decay=0.01,
|
65 |
save_total_limit=3,
|
66 |
fp16=torch.cuda.is_available(),
|
67 |
-
push_to_hub=
|
68 |
-
|
69 |
-
|
|
|
|
|
70 |
)
|
71 |
|
72 |
trainer = Trainer(
|
@@ -74,70 +105,77 @@ def fine_tune_model(tokenized_dataset):
|
|
74 |
args=training_args,
|
75 |
train_dataset=tokenized_dataset["train"],
|
76 |
eval_dataset=tokenized_dataset["test"],
|
|
|
|
|
77 |
)
|
78 |
|
79 |
trainer.train()
|
80 |
-
|
|
|
|
|
81 |
return model
|
82 |
|
83 |
-
# --- Step 4: Chatbot Interface ---
|
84 |
def initialize_chatbot():
|
85 |
-
|
|
|
86 |
try:
|
87 |
-
# Try loading fine-tuned model first
|
88 |
model = AutoModelForSeq2SeqLM.from_pretrained(FINETUNED_MODEL_NAME)
|
89 |
tokenizer = AutoTokenizer.from_pretrained(FINETUNED_MODEL_NAME)
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
|
|
|
|
|
|
|
|
96 |
return chatbot_pipe
|
97 |
|
98 |
def generate_response(message, history):
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
# Generate response
|
103 |
-
response = chatbot_pipe(input_text, max_length=128, do_sample=True)[0]['generated_text']
|
104 |
|
105 |
-
|
106 |
-
|
107 |
-
response =
|
108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
-
# --- Step 5: Deployment ---
|
111 |
def deploy_chatbot():
|
112 |
-
print("Launching chatbot interface
|
113 |
demo = gr.ChatInterface(
|
114 |
fn=generate_response,
|
115 |
-
title="Mujtaba's Shopify
|
116 |
-
description="Ask
|
117 |
examples=[
|
118 |
-
"
|
119 |
-
"
|
120 |
-
"Do you
|
121 |
],
|
122 |
-
theme="soft"
|
|
|
123 |
)
|
124 |
return demo
|
125 |
|
126 |
-
# --- Main Execution ---
|
127 |
if __name__ == "__main__":
|
128 |
-
# Login to Hugging Face Hub
|
129 |
notebook_login()
|
130 |
-
|
131 |
-
# Dataset preparation
|
132 |
dataset = load_and_preprocess_data()
|
133 |
-
|
134 |
-
|
135 |
-
# Fine-tuning (uncomment to run)
|
136 |
-
# fine_tune_model(tokenized_dataset)
|
137 |
|
138 |
-
|
139 |
-
chatbot_pipe = initialize_chatbot()
|
140 |
|
141 |
-
|
142 |
-
|
143 |
-
demo.launch(share=True)
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline, Trainer, TrainingArguments
|
3 |
from datasets import load_dataset, Dataset
|
4 |
import torch
|
5 |
import pandas as pd
|
6 |
+
from huggingface_hub import notebook_login
|
7 |
+
from transformers import DataCollatorForSeq2Seq
|
8 |
|
9 |
+
MODEL_NAME = "microsoft/DialoGPT-small"
|
10 |
+
DATASET_NAME = "embedding-data/amazon-QA"
|
|
|
11 |
FINETUNED_MODEL_NAME = "MujtabaShopifyChatbot"
|
12 |
+
HF_TOKEN = "your_huggingface_token"
|
13 |
+
|
14 |
+
chatbot_pipe = None
|
15 |
+
|
16 |
+
def show_dataset_head(dataset, num_rows=5):
|
17 |
+
print("Displaying dataset preview ", dataset)
|
18 |
+
if isinstance(dataset, dict):
|
19 |
+
for split in dataset.keys():
|
20 |
+
print("Current split ", split)
|
21 |
+
df = pd.DataFrame(dataset[split][:num_rows])
|
22 |
+
cols = [col for col in ['query', 'pos', 'question', 'answer'] if col in df.columns]
|
23 |
+
if cols:
|
24 |
+
print("Dataset columns ", cols)
|
25 |
|
|
|
26 |
def load_and_preprocess_data():
|
27 |
+
print("Loading dataset from ", DATASET_NAME)
|
28 |
dataset = load_dataset(DATASET_NAME)
|
29 |
+
show_dataset_head(dataset)
|
30 |
|
|
|
31 |
df = pd.DataFrame(dataset['train'])
|
32 |
|
33 |
+
if 'query' in df.columns and 'pos' in df.columns:
|
34 |
+
df = df.rename(columns={'query': 'question', 'pos': 'answer'})
|
35 |
+
elif 'question' not in df.columns or 'answer' not in df.columns:
|
36 |
+
df = df.rename(columns={df.columns[0]: 'question', df.columns[1]: 'answer'})
|
37 |
+
|
38 |
df = df[['question', 'answer']].dropna()
|
39 |
+
df = df[:5000]
|
40 |
|
41 |
+
df['answer'] = df['answer'].astype(str).str.replace(r'\[\^|\].*', '', regex=True)
|
|
|
42 |
|
43 |
+
processed_dataset = Dataset.from_pandas(df)
|
44 |
+
show_dataset_head(processed_dataset)
|
45 |
+
return processed_dataset.train_test_split(test_size=0.1)
|
46 |
|
|
|
47 |
def tokenize_data(dataset):
|
48 |
+
print("Tokenizing data with model ", MODEL_NAME)
|
49 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
50 |
|
51 |
def preprocess_function(examples):
|
52 |
inputs = [f"question: {q} answer:" for q in examples["question"]]
|
53 |
+
targets = [str(a) for a in examples["answer"]]
|
54 |
|
55 |
+
model_inputs = tokenizer(
|
56 |
+
inputs,
|
57 |
+
max_length=128,
|
58 |
+
truncation=True,
|
59 |
+
padding='max_length'
|
60 |
+
)
|
61 |
+
labels = tokenizer(
|
62 |
+
targets,
|
63 |
+
max_length=128,
|
64 |
+
truncation=True,
|
65 |
+
padding='max_length'
|
66 |
+
)
|
67 |
|
68 |
model_inputs["labels"] = labels["input_ids"]
|
69 |
return model_inputs
|
70 |
|
71 |
+
return dataset.map(preprocess_function, batched=True)
|
|
|
72 |
|
|
|
73 |
def fine_tune_model(tokenized_dataset):
|
74 |
+
print("Starting fine-tuning process")
|
75 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
76 |
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
|
77 |
|
78 |
+
data_collator = DataCollatorForSeq2Seq(
|
79 |
+
tokenizer,
|
80 |
+
model=model,
|
81 |
+
padding='longest',
|
82 |
+
max_length=128,
|
83 |
+
pad_to_multiple_of=8
|
84 |
+
)
|
85 |
+
|
86 |
training_args = TrainingArguments(
|
87 |
output_dir="./results",
|
88 |
+
eval_strategy="epoch",
|
89 |
+
learning_rate=5e-5,
|
90 |
+
per_device_train_batch_size=4,
|
91 |
+
per_device_eval_batch_size=4,
|
92 |
num_train_epochs=3,
|
93 |
weight_decay=0.01,
|
94 |
save_total_limit=3,
|
95 |
fp16=torch.cuda.is_available(),
|
96 |
+
push_to_hub=False,
|
97 |
+
report_to="none",
|
98 |
+
logging_steps=100,
|
99 |
+
save_steps=500,
|
100 |
+
gradient_accumulation_steps=1
|
101 |
)
|
102 |
|
103 |
trainer = Trainer(
|
|
|
105 |
args=training_args,
|
106 |
train_dataset=tokenized_dataset["train"],
|
107 |
eval_dataset=tokenized_dataset["test"],
|
108 |
+
data_collator=data_collator,
|
109 |
+
tokenizer=tokenizer
|
110 |
)
|
111 |
|
112 |
trainer.train()
|
113 |
+
print("Training completed, saving model")
|
114 |
+
model.save_pretrained(FINETUNED_MODEL_NAME)
|
115 |
+
tokenizer.save_pretrained(FINETUNED_MODEL_NAME)
|
116 |
return model
|
117 |
|
|
|
118 |
def initialize_chatbot():
|
119 |
+
global chatbot_pipe
|
120 |
+
print("Initializing chatbot with model ", FINETUNED_MODEL_NAME)
|
121 |
try:
|
|
|
122 |
model = AutoModelForSeq2SeqLM.from_pretrained(FINETUNED_MODEL_NAME)
|
123 |
tokenizer = AutoTokenizer.from_pretrained(FINETUNED_MODEL_NAME)
|
124 |
+
chatbot_pipe = pipeline(
|
125 |
+
"text2text-generation",
|
126 |
+
model=model,
|
127 |
+
tokenizer=tokenizer,
|
128 |
+
device=0 if torch.cuda.is_available() else -1
|
129 |
+
)
|
130 |
+
print("Chatbot initialized successfully")
|
131 |
+
except Exception as e:
|
132 |
+
print("Error initializing chatbot ", e)
|
133 |
+
return None
|
134 |
return chatbot_pipe
|
135 |
|
136 |
def generate_response(message, history):
|
137 |
+
if chatbot_pipe is None:
|
138 |
+
print("Chatbot pipeline not initialized")
|
139 |
+
return "System error: Chatbot not ready"
|
|
|
|
|
140 |
|
141 |
+
try:
|
142 |
+
print("Generating response for query ", message)
|
143 |
+
response = chatbot_pipe(
|
144 |
+
f"question: {message} answer:",
|
145 |
+
max_length=128,
|
146 |
+
do_sample=True,
|
147 |
+
temperature=0.7,
|
148 |
+
top_p=0.9
|
149 |
+
)[0]['generated_text']
|
150 |
+
final_response = response.split("answer:")[-1].strip()
|
151 |
+
print("Generated response ", final_response)
|
152 |
+
return final_response
|
153 |
+
except Exception as e:
|
154 |
+
print("Error generating response ", e)
|
155 |
+
return "Sorry, I encountered an error processing your request"
|
156 |
|
|
|
157 |
def deploy_chatbot():
|
158 |
+
print("Launching chatbot interface")
|
159 |
demo = gr.ChatInterface(
|
160 |
fn=generate_response,
|
161 |
+
title="Mujtaba's Shopify Assistant",
|
162 |
+
description="Ask about products, shipping, or store policies",
|
163 |
examples=[
|
164 |
+
"Will this work with iPhone 15?",
|
165 |
+
"What's the return window?",
|
166 |
+
"Do you ship to Lahore?"
|
167 |
],
|
168 |
+
theme="soft",
|
169 |
+
cache_examples=False
|
170 |
)
|
171 |
return demo
|
172 |
|
|
|
173 |
if __name__ == "__main__":
|
|
|
174 |
notebook_login()
|
|
|
|
|
175 |
dataset = load_and_preprocess_data()
|
176 |
+
tokenized_data = tokenize_data(dataset)
|
|
|
|
|
|
|
177 |
|
178 |
+
model = fine_tune_model(tokenized_data)
|
|
|
179 |
|
180 |
+
initialize_chatbot()
|
181 |
+
deploy_chatbot().launch()
|
|