Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,180 +1,180 @@
|
|
1 |
-
|
2 |
import gradio as gr
|
3 |
-
from transformers import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
from datasets import load_dataset, Dataset
|
5 |
import torch
|
6 |
import pandas as pd
|
7 |
-
from
|
8 |
|
9 |
-
|
10 |
-
|
|
|
11 |
FINETUNED_MODEL_NAME = "MujtabaShopifyChatbot"
|
|
|
|
|
12 |
|
13 |
chatbot_pipe = None
|
|
|
14 |
|
15 |
def show_dataset_head(dataset, num_rows=5):
|
16 |
-
|
17 |
if isinstance(dataset, dict):
|
18 |
for split in dataset.keys():
|
19 |
-
print("Current split ", split)
|
20 |
df = pd.DataFrame(dataset[split][:num_rows])
|
21 |
-
|
22 |
-
if
|
23 |
-
print("Dataset columns ", cols)
|
24 |
|
25 |
def load_and_preprocess_data():
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
49 |
-
|
|
|
50 |
def preprocess_function(examples):
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
inputs,
|
56 |
-
max_length=128,
|
57 |
-
truncation=True,
|
58 |
-
padding='max_length'
|
59 |
-
)
|
60 |
-
labels = tokenizer(
|
61 |
-
targets,
|
62 |
-
max_length=128,
|
63 |
truncation=True,
|
64 |
-
padding=
|
|
|
65 |
)
|
66 |
-
|
67 |
-
model_inputs["labels"] = labels["input_ids"]
|
68 |
-
return model_inputs
|
69 |
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
-
def fine_tune_model(tokenized_dataset):
|
73 |
-
print("Starting fine-tuning process")
|
74 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
75 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
|
76 |
-
|
77 |
-
data_collator = DataCollatorForSeq2Seq(
|
78 |
-
tokenizer,
|
79 |
-
model=model,
|
80 |
-
padding='longest',
|
81 |
-
max_length=128,
|
82 |
-
pad_to_multiple_of=8
|
83 |
-
)
|
84 |
-
|
85 |
training_args = TrainingArguments(
|
86 |
output_dir="./results",
|
87 |
-
eval_strategy="
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
|
|
92 |
weight_decay=0.01,
|
93 |
-
|
94 |
fp16=torch.cuda.is_available(),
|
95 |
-
push_to_hub=False,
|
96 |
-
report_to="none",
|
97 |
logging_steps=100,
|
98 |
-
save_steps=
|
99 |
-
|
|
|
|
|
100 |
)
|
101 |
-
|
102 |
trainer = Trainer(
|
103 |
model=model,
|
104 |
args=training_args,
|
105 |
-
train_dataset=
|
106 |
-
eval_dataset=
|
107 |
-
data_collator=
|
108 |
-
tokenizer=tokenizer
|
109 |
)
|
110 |
-
|
111 |
trainer.train()
|
112 |
-
print("Training completed, saving model")
|
113 |
model.save_pretrained(FINETUNED_MODEL_NAME)
|
114 |
tokenizer.save_pretrained(FINETUNED_MODEL_NAME)
|
115 |
return model
|
116 |
|
117 |
def initialize_chatbot():
|
118 |
-
|
119 |
-
|
|
|
120 |
try:
|
121 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(FINETUNED_MODEL_NAME)
|
122 |
tokenizer = AutoTokenizer.from_pretrained(FINETUNED_MODEL_NAME)
|
|
|
|
|
|
|
123 |
chatbot_pipe = pipeline(
|
124 |
-
"
|
125 |
model=model,
|
126 |
tokenizer=tokenizer,
|
127 |
device=0 if torch.cuda.is_available() else -1
|
128 |
)
|
129 |
-
print("Chatbot initialized successfully")
|
130 |
except Exception as e:
|
131 |
-
print("
|
132 |
-
|
133 |
-
return chatbot_pipe
|
134 |
|
135 |
def generate_response(message, history):
|
136 |
-
|
137 |
-
|
138 |
-
return "System
|
139 |
-
|
140 |
try:
|
141 |
-
print("Generating response for query ", message)
|
142 |
response = chatbot_pipe(
|
143 |
-
|
144 |
-
max_length=
|
145 |
do_sample=True,
|
146 |
temperature=0.7,
|
147 |
-
|
|
|
|
|
|
|
148 |
)[0]['generated_text']
|
149 |
-
|
150 |
-
|
151 |
-
return final_response
|
152 |
except Exception as e:
|
153 |
-
print("
|
154 |
-
return "
|
155 |
|
156 |
def deploy_chatbot():
|
157 |
-
|
158 |
demo = gr.ChatInterface(
|
159 |
fn=generate_response,
|
160 |
-
title="
|
161 |
-
description="Ask about products, shipping, or store policies",
|
162 |
examples=[
|
163 |
-
"
|
164 |
-
"What's the return
|
165 |
-
"Do you ship
|
166 |
-
]
|
167 |
-
theme="soft",
|
168 |
-
cache_examples=False
|
169 |
)
|
170 |
return demo
|
171 |
|
172 |
if __name__ == "__main__":
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
model = fine_tune_model(tokenized_data)
|
178 |
-
|
179 |
initialize_chatbot()
|
180 |
deploy_chatbot().launch()
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import (
|
3 |
+
AutoTokenizer,
|
4 |
+
AutoModelForCausalLM,
|
5 |
+
pipeline,
|
6 |
+
Trainer,
|
7 |
+
TrainingArguments,
|
8 |
+
DataCollatorForLanguageModeling
|
9 |
+
)
|
10 |
from datasets import load_dataset, Dataset
|
11 |
import torch
|
12 |
import pandas as pd
|
13 |
+
from sklearn.model_selection import train_test_split
|
14 |
|
15 |
+
# Configuration
|
16 |
+
MODEL_NAME = "microsoft/DialoGPT-medium"
|
17 |
+
DATASET_NAME = "embedding-data/Amazon-QA"
|
18 |
FINETUNED_MODEL_NAME = "MujtabaShopifyChatbot"
|
19 |
+
MAX_LENGTH = 128
|
20 |
+
BATCH_SIZE = 8
|
21 |
|
22 |
chatbot_pipe = None
|
23 |
+
tokenizer = None
|
24 |
|
25 |
def show_dataset_head(dataset, num_rows=5):
|
26 |
+
"""Dataset preview"""
|
27 |
if isinstance(dataset, dict):
|
28 |
for split in dataset.keys():
|
|
|
29 |
df = pd.DataFrame(dataset[split][:num_rows])
|
30 |
+
print(f"\n{split} split preview:")
|
31 |
+
print(df[['question', 'answer']].head() if 'question' in df.columns else df.head())
|
|
|
32 |
|
33 |
def load_and_preprocess_data():
|
34 |
+
"""Data loading with cleaning"""
|
35 |
+
print(f"Loading {DATASET_NAME}")
|
36 |
+
try:
|
37 |
+
dataset = load_dataset(DATASET_NAME)
|
38 |
+
show_dataset_head(dataset)
|
39 |
+
|
40 |
+
df = pd.DataFrame(dataset['train'])
|
41 |
+
|
42 |
+
# Column normalization
|
43 |
+
if 'query' in df.columns and 'pos' in df.columns:
|
44 |
+
df = df.rename(columns={'query': 'question', 'pos': 'answer'})
|
45 |
+
elif 'question' not in df.columns or 'answer' not in df.columns:
|
46 |
+
if len(df.columns) >= 2:
|
47 |
+
df = df.rename(columns={df.columns[0]: 'question', df.columns[1]: 'answer'})
|
48 |
+
else:
|
49 |
+
raise ValueError("Dataset must have at least two columns for question and answer")
|
50 |
+
|
51 |
+
# Cleaning
|
52 |
+
df = df[['question', 'answer']].dropna()
|
53 |
+
df = df[~df['answer'].str.contains(r'\[|\^|\]', regex=True, na=False)]
|
54 |
+
df = df[df['answer'].str.len() > 10]
|
55 |
+
df = df[:10000]
|
56 |
+
|
57 |
+
# Split
|
58 |
+
train_df, test_df = train_test_split(df, test_size=0.1, random_state=42)
|
59 |
+
return Dataset.from_pandas(train_df), Dataset.from_pandas(test_df)
|
60 |
+
except Exception as e:
|
61 |
+
print(f"Data error: {str(e)}")
|
62 |
+
raise
|
63 |
+
|
64 |
+
def tokenize_data(train_dataset, test_dataset):
|
65 |
+
"""Basic tokenization"""
|
66 |
+
global tokenizer
|
67 |
+
print(f"Tokenizing with {MODEL_NAME}")
|
68 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
69 |
+
tokenizer.pad_token = tokenizer.eos_token
|
70 |
+
|
71 |
def preprocess_function(examples):
|
72 |
+
texts = [f"{q} {tokenizer.eos_token} {a}" for q, a in zip(examples["question"], examples["answer"])]
|
73 |
+
return tokenizer(
|
74 |
+
texts,
|
75 |
+
max_length=MAX_LENGTH,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
truncation=True,
|
77 |
+
padding="max_length",
|
78 |
+
return_tensors="pt"
|
79 |
)
|
|
|
|
|
|
|
80 |
|
81 |
+
train_tokenized = train_dataset.map(preprocess_function, batched=True, remove_columns=['question', 'answer'])
|
82 |
+
test_tokenized = test_dataset.map(preprocess_function, batched=True, remove_columns=['question', 'answer'])
|
83 |
+
return train_tokenized, test_tokenized
|
84 |
+
|
85 |
+
def fine_tune_model(train_data, test_data):
|
86 |
+
"""Optimized training"""
|
87 |
+
print("Starting fine-tuning")
|
88 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
training_args = TrainingArguments(
|
91 |
output_dir="./results",
|
92 |
+
eval_strategy="steps",
|
93 |
+
eval_steps=500,
|
94 |
+
learning_rate=3e-5,
|
95 |
+
per_device_train_batch_size=BATCH_SIZE,
|
96 |
+
per_device_eval_batch_size=BATCH_SIZE,
|
97 |
+
num_train_epochs=4,
|
98 |
weight_decay=0.01,
|
99 |
+
warmup_ratio=0.1,
|
100 |
fp16=torch.cuda.is_available(),
|
|
|
|
|
101 |
logging_steps=100,
|
102 |
+
save_steps=1000,
|
103 |
+
save_total_limit=2,
|
104 |
+
load_best_model_at_end=True,
|
105 |
+
report_to="none" # Disable W&B logging
|
106 |
)
|
107 |
+
|
108 |
trainer = Trainer(
|
109 |
model=model,
|
110 |
args=training_args,
|
111 |
+
train_dataset=train_data,
|
112 |
+
eval_dataset=test_data,
|
113 |
+
data_collator=DataCollatorForLanguageModeling(tokenizer, mlm=False)
|
|
|
114 |
)
|
115 |
+
|
116 |
trainer.train()
|
|
|
117 |
model.save_pretrained(FINETUNED_MODEL_NAME)
|
118 |
tokenizer.save_pretrained(FINETUNED_MODEL_NAME)
|
119 |
return model
|
120 |
|
121 |
def initialize_chatbot():
|
122 |
+
"""Initialize generation pipeline"""
|
123 |
+
global chatbot_pipe, tokenizer
|
124 |
+
print(f"Loading {FINETUNED_MODEL_NAME}")
|
125 |
try:
|
|
|
126 |
tokenizer = AutoTokenizer.from_pretrained(FINETUNED_MODEL_NAME)
|
127 |
+
tokenizer.pad_token = tokenizer.eos_token
|
128 |
+
model = AutoModelForCausalLM.from_pretrained(FINETUNED_MODEL_NAME)
|
129 |
+
|
130 |
chatbot_pipe = pipeline(
|
131 |
+
"text-generation",
|
132 |
model=model,
|
133 |
tokenizer=tokenizer,
|
134 |
device=0 if torch.cuda.is_available() else -1
|
135 |
)
|
|
|
136 |
except Exception as e:
|
137 |
+
print(f"Initialization failed: {str(e)}")
|
138 |
+
raise
|
|
|
139 |
|
140 |
def generate_response(message, history):
|
141 |
+
"""Direct generation without prompt engineering"""
|
142 |
+
if not chatbot_pipe:
|
143 |
+
return "System initializing..."
|
144 |
+
|
145 |
try:
|
|
|
146 |
response = chatbot_pipe(
|
147 |
+
message,
|
148 |
+
max_length=MAX_LENGTH,
|
149 |
do_sample=True,
|
150 |
temperature=0.7,
|
151 |
+
top_k=50,
|
152 |
+
top_p=0.9,
|
153 |
+
repetition_penalty=1.2,
|
154 |
+
num_return_sequences=1
|
155 |
)[0]['generated_text']
|
156 |
+
|
157 |
+
return response.split(tokenizer.eos_token)[-1].strip()
|
|
|
158 |
except Exception as e:
|
159 |
+
print(f"Generation error: {str(e)}")
|
160 |
+
return "Please try again later."
|
161 |
|
162 |
def deploy_chatbot():
|
163 |
+
"""Gradio interface"""
|
164 |
demo = gr.ChatInterface(
|
165 |
fn=generate_response,
|
166 |
+
title="Shopify Assistant",
|
|
|
167 |
examples=[
|
168 |
+
"Does this work with iPhone 15?",
|
169 |
+
"What's the return policy?",
|
170 |
+
"Do you ship internationally?"
|
171 |
+
]
|
|
|
|
|
172 |
)
|
173 |
return demo
|
174 |
|
175 |
if __name__ == "__main__":
|
176 |
+
train_data, test_data = load_and_preprocess_data()
|
177 |
+
train_tokenized, test_tokenized = tokenize_data(train_data, test_data)
|
178 |
+
model = fine_tune_model(train_tokenized, test_tokenized)
|
|
|
|
|
|
|
179 |
initialize_chatbot()
|
180 |
deploy_chatbot().launch()
|