mohd43's picture
Update app.py
dbcb65d verified
raw
history blame
880 Bytes
import gradio as gr
from transformers import pipeline
# Load the text classification pipeline
pipeline = pipeline("text-classification", model="ProsusAI/finbert", trust_remote_code=True)
def predict(input_text):
predictions = pipeline(input_text, threshold=0.5, return_scores=True)
return predictions[0]
# Define the Gradio interface
gradio_app = gr.Interface(
predict,
inputs=gr.Textbox(label="Write a text"),
outputs=gr.Label(label="Predicted Sentiment Probabilities"),
components=[
gr.Label(label="Neutral: {:.2f}".format(predictions[0]["score"][0])),
gr.Label(label="Positive: {:.2f}".format(predictions[0]["score"][1])),
gr.Label(label="Negative: {:.2f}".format(predictions[0]["score"][2])),
],
title="Financial Sentiment Analysis",
)
# Launch the Gradio interface
if __name__ == "__main__":
gradio_app.launch()