File size: 717 Bytes
225a9a7
 
 
7222a71
 
225a9a7
7222a71
 
 
225a9a7
7222a71
225a9a7
 
7222a71
 
 
225a9a7
 
7222a71
225a9a7
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
import gradio as gr
from transformers import pipeline

# Load the text classification pipeline
pipeline = pipeline("text-classification", model="ProsusAI/finbert", trust_remote_code=True)

def predict(input_text):  # Corrected argument name
    predictions = pipeline(input_text, threshold=0.5, return_scores=False)
    return predictions[0]  # Extract the first prediction

# Define the Gradio interface
gradio_app = gr.Interface(
    predict,
    inputs=gr.Textbox(label="Write a text"),
    outputs=gr.Textbox(label="Predicted Sentiment"),  # More descriptive label
    title="Financial Sentiment Analysis",  # More specific title
)

# Launch the Gradio interface
if __name__ == "__main__":
    gradio_app.launch()