# ------------------------ Libraries -------------------------- import os import pandas as pd import streamlit as st import plotly.graph_objs as go import logging import subprocess import threading from dotenv import load_dotenv from requests.exceptions import ConnectionError, Timeout, TooManyRedirects # ------------------------ Environment Variables -------------------------- load_dotenv() log_folder = os.getenv("LOG_FOLDER") # Logging log_folder = os.getenv("LOG_STREAMLIT") os.makedirs(log_folder, exist_ok=True) log_file = os.path.join(log_folder, "front.log") log_format = "%(asctime)s [%(levelname)s] - %(message)s" logging.basicConfig(filename=log_file, level=logging.INFO, format=log_format) logging.info("Streamlit app has started") # Create output folder if it doesn't exist if not os.path.exists("output"): os.makedirs("output") #-------------------------------------back---------------------------------- def safe_read_csv(file_path, sep=','): if os.path.exists(file_path) and os.path.getsize(file_path) > 0: return pd.read_csv(file_path, sep=sep) else: logging.warning(f"File {file_path} is empty or does not exist.") return pd.DataFrame() # return an empty DataFrame # etherscan ## Load the data from the CSV files df_etherscan = pd.DataFrame() for filename in os.listdir('output'): if filename.endswith('.csv') and 'transactions_' in filename: df_temp = safe_read_csv(os.path.join('output', filename), sep=',') df_etherscan = pd.concat([df_etherscan, df_temp], ignore_index=True) # CMC ## Load cmc data df_cmc = safe_read_csv("output/top_100_update.csv", sep=',') df_cmc = df_cmc[df_cmc["last_updated"] == df_cmc["last_updated"].max()] # Function to execute the scraping functions def execute_etherscan_scraping(): subprocess.call(["python", "utils/scrap_etherscan.py"]) logging.info("Etherscan scraping completed") threading.Timer(3600, execute_etherscan_scraping).start() # Function to execute the scraping functions def execute_cmc_scraping(): subprocess.call(["python", "utils/scrap_cmc.py"]) logging.info("CMC scraping completed") threading.Timer(2592000 / 9000, execute_cmc_scraping).start() if "initialized" not in st.session_state: # Start the scraping threads threading.Thread(target=execute_etherscan_scraping).start() threading.Thread(target=execute_cmc_scraping).start() st.session_state["initialized"] = True #-------------------------------------streamlit ---------------------------------- # Set the title and other page configurations st.title('Crypto Analysis') # Create two columns for the two plots col1, col2 = st.columns(2) with st.container(): with col1: # etherscan selected_token = st.selectbox('Select Token', df_etherscan['tokenSymbol'].unique(), index=0) # Filter the data based on the selected token filtered_df = df_etherscan[df_etherscan['tokenSymbol'] == selected_token] # Plot the token value over time st.plotly_chart( go.Figure( data=[ go.Scatter( x=filtered_df['timeStamp'], y=filtered_df['value'], mode='lines', name='Value over time' ) ], layout=go.Layout( title='Token Value Over Time', yaxis=dict( title=f'Value ({selected_token})', ), showlegend=True, legend=go.layout.Legend(x=0, y=1.0), margin=go.layout.Margin(l=40, r=0, t=40, b=30), width=500, height=500 ) ) ) with col2: # cmc selected_var = st.selectbox('Select Token', ["percent_change_24h","percent_change_7d","percent_change_90d"], index=0) # Sort the DataFrame by the 'percent_change_24h' column in ascending order df_sorted = df_cmc.sort_values(by=selected_var, ascending=False) # Select the top 10 and worst 10 rows top_10 = df_sorted.head(10) worst_10 = df_sorted.tail(10) # Combine the top and worst dataframes for plotting combined_df = pd.concat([top_10, worst_10], axis=0) max_abs_val = max(abs(combined_df[selected_var].min()), abs(combined_df[selected_var].max())) # Create a bar plot for the top 10 with a green color scale fig = go.Figure(data=[ go.Bar( x=top_10["symbol"], y=top_10[selected_var], marker_color='rgb(0,100,0)', # Green color for top 10 hovertext= "Name : "+top_10["name"].astype(str)+ '
' + selected_var + " : " + top_10["percent_tokens_circulation"].astype(str) + '
' + 'Market Cap: ' + top_10["market_cap"].astype(str) + '
' + 'Fully Diluted Market Cap: ' + top_10["fully_diluted_market_cap"].astype(str) + '
' + 'Last Updated: ' + top_10["last_updated"].astype(str), name="top_10" ) ]) # Add the worst 10 to the same plot with a red color scale fig.add_traces(go.Bar( x=worst_10["symbol"], y=worst_10[selected_var], marker_color='rgb(255,0,0)', # Red color for worst 10 hovertext="Name:"+worst_10["name"].astype(str)+ '
' + selected_var + " : " + worst_10["percent_tokens_circulation"].astype(str) + '
' + 'Market Cap: ' + worst_10["market_cap"].astype(str) + '
' + 'Fully Diluted Market Cap: ' + worst_10["fully_diluted_market_cap"].astype(str) + '
' + 'Last Updated: ' + worst_10["last_updated"].astype(str), name="worst_10" ) ) # Customize aspect fig.update_traces(marker_line_color='rgb(8,48,107)', marker_line_width=1.5, opacity=0.8) fig.update_layout(title_text=f'Top 10 and Worst 10 by {selected_var.split("_")[-1]} Percentage Change') fig.update_xaxes(categoryorder='total ascending') fig.update_layout( autosize=False, width=500, height=500, margin=dict( l=50, r=50, b=100, t=100, pad=4 ), #paper_bgcolor="LightSteelBlue", ) st.plotly_chart(fig) #-------------------------------------end ----------------------------------