File size: 10,128 Bytes
349c960
1a57d8f
 
 
 
 
349c960
 
 
 
6116805
 
349c960
 
 
 
 
 
 
 
 
 
 
1a57d8f
349c960
 
 
 
 
 
1a57d8f
349c960
 
 
 
 
 
1a57d8f
 
 
 
349c960
1a57d8f
349c960
 
 
1a57d8f
 
 
349c960
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6116805
 
 
 
 
349c960
 
 
 
6116805
349c960
 
1a57d8f
 
 
 
349c960
1a57d8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6116805
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a57d8f
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
# ------------------------ Libraries --------------------------
import os
import pandas as pd
import streamlit as st
import plotly.graph_objs as go
import logging
import subprocess
import threading
from dotenv import load_dotenv
from requests.exceptions import ConnectionError, Timeout, TooManyRedirects
import plotly.express as px 
import json

# ------------------------ Environment Variables --------------------------

load_dotenv()
log_folder = os.getenv("LOG_FOLDER")
# Logging
log_folder = os.getenv("LOG_STREAMLIT")
os.makedirs(log_folder, exist_ok=True)
log_file = os.path.join(log_folder, "front.log")
log_format = "%(asctime)s [%(levelname)s] - %(message)s"
logging.basicConfig(filename=log_file, level=logging.INFO, format=log_format)
logging.info("Streamlit app has started")
# Create output folder if it doesn't exist
if not os.path.exists("output"):
    os.makedirs("output")


#-------------------------------------back----------------------------------

def safe_read_csv(file_path, sep=','):
    if os.path.exists(file_path) and os.path.getsize(file_path) > 0:
        return pd.read_csv(file_path, sep=sep)
    else:
        logging.warning(f"File {file_path} is empty or does not exist.")
        return pd.DataFrame()  # return an empty DataFrame


# etherscan
## Load the data from the CSV files
df_etherscan = pd.DataFrame()
for filename in os.listdir('output'):
    if filename.endswith('.csv') and 'transactions_' in filename:
        df_temp = safe_read_csv(os.path.join('output', filename), sep=',')
        df_etherscan = pd.concat([df_etherscan, df_temp], ignore_index=True)

# CMC
## Load cmc data
df_cmc = safe_read_csv("output/top_100_update.csv", sep=',')
df_cmc = df_cmc[df_cmc["last_updated"] == df_cmc["last_updated"].max()]

# Function to execute the scraping functions
def execute_etherscan_scraping():
    subprocess.call(["python", "utils/scrap_etherscan.py"])
    logging.info("Etherscan scraping completed")
    threading.Timer(3600, execute_etherscan_scraping).start()
    
# Function to execute the scraping functions
def execute_cmc_scraping():
    subprocess.call(["python", "utils/scrap_cmc.py"])
    logging.info("CMC scraping completed")
    threading.Timer(2592000 / 9000, execute_cmc_scraping).start()

def execute_influencers_scraping():
    subprocess.call(["python", "utils/scrap_influencers_balance.py"])
    logging.info("Influencers balance scraping completed")
    threading.Timer(3600, execute_influencers_scraping).start()  # Run every hour, for example

if "initialized" not in st.session_state:
    # Start the scraping threads
    threading.Thread(target=execute_etherscan_scraping).start()
    threading.Thread(target=execute_cmc_scraping).start()
    threading.Thread(target=execute_influencers_scraping).start()
    st.session_state["initialized"] = True

#-------------------------------------streamlit ----------------------------------

# Set the title and other page configurations
st.title('Crypto Analysis')

# Create two columns for the two plots
col1, col2 = st.columns(2)

with st.container():

    with col1:
        # etherscan
        selected_token = st.selectbox('Select Token', df_etherscan['tokenSymbol'].unique(), index=0)
        # Filter the data based on the selected token
        filtered_df = df_etherscan[df_etherscan['tokenSymbol'] == selected_token]
        # Plot the token value over time
        st.plotly_chart(
            go.Figure(
                data=[
                    go.Scatter(
                        x=filtered_df['timeStamp'],
                        y=filtered_df['value'],
                        mode='lines',
                        name='Value over time'
                    )
                ],
                layout=go.Layout(
                    title='Token Value Over Time',
                    yaxis=dict(
                        title=f'Value ({selected_token})',
                    ),
                    showlegend=True,
                    legend=go.layout.Legend(x=0, y=1.0),
                    margin=go.layout.Margin(l=40, r=0, t=40, b=30),
                    width=500,
                    height=500

                )
            )
        )

    with col2:
        # cmc
        selected_var = st.selectbox('Select Token', ["percent_change_24h","percent_change_7d","percent_change_90d"], index=0)
        # Sort the DataFrame by the 'percent_change_24h' column in ascending order
        df_sorted = df_cmc.sort_values(by=selected_var, ascending=False)
        # Select the top 10 and worst 10 rows
        top_10 = df_sorted.head(10)
        worst_10 = df_sorted.tail(10)
        # Combine the top and worst dataframes for plotting
        combined_df = pd.concat([top_10, worst_10], axis=0)
        max_abs_val = max(abs(combined_df[selected_var].min()), abs(combined_df[selected_var].max()))

        # Create a bar plot for the top 10 with a green color scale
        fig = go.Figure(data=[
            go.Bar(
                x=top_10["symbol"],
                y=top_10[selected_var],
                marker_color='rgb(0,100,0)',  # Green color for top 10
                hovertext= "Name : "+top_10["name"].astype(str)+ '<br>' +
                        selected_var + " : " + top_10["percent_tokens_circulation"].astype(str) + '<br>' +
                        'Market Cap: ' + top_10["market_cap"].astype(str) + '<br>' +
                        'Fully Diluted Market Cap: ' + top_10["fully_diluted_market_cap"].astype(str) + '<br>' +
                        'Last Updated: ' + top_10["last_updated"].astype(str),
                name="top_10"
            )
        ])

        # Add the worst 10 to the same plot with a red color scale
        fig.add_traces(go.Bar(
                x=worst_10["symbol"],
                y=worst_10[selected_var],
                marker_color='rgb(255,0,0)',  # Red color for worst 10
                hovertext="Name:"+worst_10["name"].astype(str)+ '<br>' +
                        selected_var + " : " + worst_10["percent_tokens_circulation"].astype(str) + '<br>' +
                        'Market Cap: ' + worst_10["market_cap"].astype(str) + '<br>' +
                        'Fully Diluted Market Cap: ' + worst_10["fully_diluted_market_cap"].astype(str) + '<br>' +
                        'Last Updated: ' + worst_10["last_updated"].astype(str),
                name="worst_10"
            )
        )

        # Customize aspect
        fig.update_traces(marker_line_color='rgb(8,48,107)', marker_line_width=1.5, opacity=0.8)
        fig.update_layout(title_text=f'Top 10 and Worst 10 by {selected_var.split("_")[-1]} Percentage Change')
        fig.update_xaxes(categoryorder='total ascending')
        fig.update_layout(
            autosize=False,
            width=500,
            height=500,
            margin=dict(
                l=50,
                r=50,
                b=100,
                t=100,
                pad=4
            ),
            #paper_bgcolor="LightSteelBlue",
        )
        st.plotly_chart(fig)

with st.container():
    with col1:

        # Load influencers
        def load_influencers():
            try:
                with open("ressources/dict_influencers_addr.json", "r") as file:
                    return json.load(file)
            except Exception as e:
                st.error(f"Error loading influencers: {e}")
                return {}

        influencers = load_influencers()

        new_influencer_name = st.text_input("New Influencer Name")
        new_influencer_addr = st.text_input("New Influencer Address")
        if st.button("Add Influencer"):
            if new_influencer_name and new_influencer_addr:
                influencers[new_influencer_name] = new_influencer_addr
                with open("ressources/dict_influencers_addr.json", "w") as file:
                    json.dump(influencers, file, indent=4)
                st.success(f"Influencer {new_influencer_name} added")
                subprocess.call(["python", "utils/scrap_influencers_balance.py"])
                st.success(f"Balance updated")
            else:
                st.error("Please enter both name and address")

        # Load Ether balances
        try:
            df_balances = pd.read_csv("output/influencers_balances.csv")
            logging.info(f"Balances uploaded, shape of dataframe is {df_balances.shape}")
            #st.write("DataFrame Loaded:", df_balances)  # Debugging line
        except FileNotFoundError:
            st.error("Balance data not found. Please wait for the next update cycle.")
            df_balances = pd.DataFrame()
            
        # Inverting the influencers dictionary
        inverted_influencers = {v.lower(): k for k, v in influencers.items()}

        if not df_balances.empty:
            df_balances["balance"] = df_balances["balance"].astype(float) / 1e18  # Convert Wei to Ether
            df_balances = df_balances.rename(columns={"account": "address"})

            # Ensure addresses are in the same format as in the inverted dictionary (e.g., lowercase)
            df_balances["address"] = df_balances["address"].str.lower()

            # Perform the mapping
            df_balances["influencer"] = df_balances["address"].map(inverted_influencers)
            #st.write("Mapped DataFrame:", df_balances)  # Debugging line

            fig = px.bar(df_balances, y="influencer", x="balance",orientation="h")
            fig.update_layout(
                title='Ether Balances of Influencers',
                xaxis=dict(
                    title='Balance in eth',
                    titlefont_size=16,
                    tickfont_size=14,
                ))
            fig.update_layout(
                autosize=False,
                width=500,
                height=500,
                margin=dict(
                    l=50,
                    r=50,
                    b=100,
                    t=100,
                    pad=4
                ))

            st.plotly_chart(fig)
        else:
            logging.info("DataFrame is empty")



#-------------------------------------end ----------------------------------