File size: 6,729 Bytes
349c960
1a57d8f
 
 
 
 
349c960
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a57d8f
349c960
 
 
 
 
 
1a57d8f
349c960
 
 
 
 
 
1a57d8f
 
 
 
349c960
1a57d8f
349c960
 
 
1a57d8f
 
 
349c960
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a57d8f
 
 
 
349c960
1a57d8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# ------------------------ Libraries --------------------------
import os
import pandas as pd
import streamlit as st
import plotly.graph_objs as go
import logging
import subprocess
import threading
from dotenv import load_dotenv
from requests.exceptions import ConnectionError, Timeout, TooManyRedirects

# ------------------------ Environment Variables --------------------------

load_dotenv()
log_folder = os.getenv("LOG_FOLDER")
# Logging
log_folder = os.getenv("LOG_STREAMLIT")
os.makedirs(log_folder, exist_ok=True)
log_file = os.path.join(log_folder, "front.log")
log_format = "%(asctime)s [%(levelname)s] - %(message)s"
logging.basicConfig(filename=log_file, level=logging.INFO, format=log_format)
logging.info("Streamlit app has started")
# Create output folder if it doesn't exist
if not os.path.exists("output"):
    os.makedirs("output")


#-------------------------------------back----------------------------------

def safe_read_csv(file_path, sep=','):
    if os.path.exists(file_path) and os.path.getsize(file_path) > 0:
        return pd.read_csv(file_path, sep=sep)
    else:
        logging.warning(f"File {file_path} is empty or does not exist.")
        return pd.DataFrame()  # return an empty DataFrame


# etherscan
## Load the data from the CSV files
df_etherscan = pd.DataFrame()
for filename in os.listdir('output'):
    if filename.endswith('.csv') and 'transactions_' in filename:
        df_temp = safe_read_csv(os.path.join('output', filename), sep=',')
        df_etherscan = pd.concat([df_etherscan, df_temp], ignore_index=True)

# CMC
## Load cmc data
df_cmc = safe_read_csv("output/top_100_update.csv", sep=',')
df_cmc = df_cmc[df_cmc["last_updated"] == df_cmc["last_updated"].max()]

# Function to execute the scraping functions
def execute_etherscan_scraping():
    subprocess.call(["python", "utils/scrap_etherscan.py"])
    logging.info("Etherscan scraping completed")
    threading.Timer(3600, execute_etherscan_scraping).start()
    
# Function to execute the scraping functions
def execute_cmc_scraping():
    subprocess.call(["python", "utils/scrap_cmc.py"])
    logging.info("CMC scraping completed")
    threading.Timer(2592000 / 9000, execute_cmc_scraping).start()

if "initialized" not in st.session_state:
    # Start the scraping threads
    threading.Thread(target=execute_etherscan_scraping).start()
    threading.Thread(target=execute_cmc_scraping).start()
    st.session_state["initialized"] = True

#-------------------------------------streamlit ----------------------------------

# Set the title and other page configurations
st.title('Crypto Analysis')

# Create two columns for the two plots
col1, col2 = st.columns(2)

with st.container():

    with col1:
        # etherscan
        selected_token = st.selectbox('Select Token', df_etherscan['tokenSymbol'].unique(), index=0)
        # Filter the data based on the selected token
        filtered_df = df_etherscan[df_etherscan['tokenSymbol'] == selected_token]
        # Plot the token value over time
        st.plotly_chart(
            go.Figure(
                data=[
                    go.Scatter(
                        x=filtered_df['timeStamp'],
                        y=filtered_df['value'],
                        mode='lines',
                        name='Value over time'
                    )
                ],
                layout=go.Layout(
                    title='Token Value Over Time',
                    yaxis=dict(
                        title=f'Value ({selected_token})',
                    ),
                    showlegend=True,
                    legend=go.layout.Legend(x=0, y=1.0),
                    margin=go.layout.Margin(l=40, r=0, t=40, b=30),
                    width=500,
                    height=500

                )
            )
        )

    with col2:
        # cmc
        selected_var = st.selectbox('Select Token', ["percent_change_24h","percent_change_7d","percent_change_90d"], index=0)
        # Sort the DataFrame by the 'percent_change_24h' column in ascending order
        df_sorted = df_cmc.sort_values(by=selected_var, ascending=False)
        # Select the top 10 and worst 10 rows
        top_10 = df_sorted.head(10)
        worst_10 = df_sorted.tail(10)
        # Combine the top and worst dataframes for plotting
        combined_df = pd.concat([top_10, worst_10], axis=0)
        max_abs_val = max(abs(combined_df[selected_var].min()), abs(combined_df[selected_var].max()))

        # Create a bar plot for the top 10 with a green color scale
        fig = go.Figure(data=[
            go.Bar(
                x=top_10["symbol"],
                y=top_10[selected_var],
                marker_color='rgb(0,100,0)',  # Green color for top 10
                hovertext= "Name : "+top_10["name"].astype(str)+ '<br>' +
                        selected_var + " : " + top_10["percent_tokens_circulation"].astype(str) + '<br>' +
                        'Market Cap: ' + top_10["market_cap"].astype(str) + '<br>' +
                        'Fully Diluted Market Cap: ' + top_10["fully_diluted_market_cap"].astype(str) + '<br>' +
                        'Last Updated: ' + top_10["last_updated"].astype(str),
                name="top_10"
            )
        ])

        # Add the worst 10 to the same plot with a red color scale
        fig.add_traces(go.Bar(
                x=worst_10["symbol"],
                y=worst_10[selected_var],
                marker_color='rgb(255,0,0)',  # Red color for worst 10
                hovertext="Name:"+worst_10["name"].astype(str)+ '<br>' +
                        selected_var + " : " + worst_10["percent_tokens_circulation"].astype(str) + '<br>' +
                        'Market Cap: ' + worst_10["market_cap"].astype(str) + '<br>' +
                        'Fully Diluted Market Cap: ' + worst_10["fully_diluted_market_cap"].astype(str) + '<br>' +
                        'Last Updated: ' + worst_10["last_updated"].astype(str),
                name="worst_10"
            )
        )

        # Customize aspect
        fig.update_traces(marker_line_color='rgb(8,48,107)', marker_line_width=1.5, opacity=0.8)
        fig.update_layout(title_text=f'Top 10 and Worst 10 by {selected_var.split("_")[-1]} Percentage Change')
        fig.update_xaxes(categoryorder='total ascending')
        fig.update_layout(
            autosize=False,
            width=500,
            height=500,
            margin=dict(
                l=50,
                r=50,
                b=100,
                t=100,
                pad=4
            ),
            #paper_bgcolor="LightSteelBlue",
        )
        st.plotly_chart(fig)




#-------------------------------------end ----------------------------------