Commit
·
14cc0c1
1
Parent(s):
fa76e27
Upload 9 files
Browse files- .env +11 -0
- .gitattributes +1 -0
- .gitignore +4 -0
- README.md +11 -5
- app.py +240 -0
- models/config.json +152 -0
- models/dolphin-2.1-mistral-7b.Q4_K_S.gguf +3 -0
- models/model.safetensors +3 -0
- requirements.txt +40 -0
.env
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Global variables
|
2 |
+
CUDA_VISIBLE_DEVICES=0
|
3 |
+
FORCE_CMAKE=1
|
4 |
+
CMAKE_ARGS="-DLLAMA_CUBLAS=on"
|
5 |
+
LANGUAGE=en
|
6 |
+
TTS=gTTS
|
7 |
+
#when you use it in local
|
8 |
+
OUTPUT_PATH=output
|
9 |
+
MODEL_DIR=models
|
10 |
+
#MODEL_PATH=models/dolphin-2.2.1-mistral-7b.Q2_K.gguf
|
11 |
+
|
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.gguf filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
output/
|
2 |
+
models/
|
3 |
+
*.gguf
|
4 |
+
*.bin
|
README.md
CHANGED
@@ -1,10 +1,16 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
-
sdk:
|
|
|
|
|
7 |
pinned: false
|
|
|
8 |
---
|
9 |
|
10 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: Whisper Llm Gtts
|
3 |
+
emoji: 🌍
|
4 |
+
colorFrom: green
|
5 |
+
colorTo: yellow
|
6 |
+
sdk: streamlit
|
7 |
+
sdk_version: 1.28.2
|
8 |
+
app_file: app.py
|
9 |
pinned: false
|
10 |
+
license: apache-2.0
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
14 |
+
|
15 |
+
|
16 |
+
|
app.py
ADDED
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import time
|
3 |
+
import gradio as gr
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
from llama_cpp import Llama
|
6 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline, GenerationConfig
|
7 |
+
from pytube import YouTube
|
8 |
+
from gtts import gTTS
|
9 |
+
import torch
|
10 |
+
import requests
|
11 |
+
import soundfile as sf
|
12 |
+
import numpy as np
|
13 |
+
#-----------------------------------env-----------------------------------
|
14 |
+
|
15 |
+
# Load environment variables
|
16 |
+
load_dotenv(dotenv_path=".env")
|
17 |
+
|
18 |
+
# Access the variables
|
19 |
+
MODEL_DIR = os.getenv("MODEL_DIR")
|
20 |
+
OUTPUT_PATH = os.getenv("OUTPUT_PATH")
|
21 |
+
LANGUAGE = os.getenv("LANGUAGE")
|
22 |
+
tts_method = os.getenv("TTS")
|
23 |
+
|
24 |
+
# Iterate through all files in the current directory
|
25 |
+
model_exists = False
|
26 |
+
for filename in os.listdir(MODEL_DIR):
|
27 |
+
if filename.endswith('.gguf'):
|
28 |
+
model_exists = True
|
29 |
+
MODEL_PATH = os.path.join(MODEL_DIR, filename)
|
30 |
+
break
|
31 |
+
|
32 |
+
|
33 |
+
|
34 |
+
# Ensure output path exists
|
35 |
+
if not os.path.exists(OUTPUT_PATH):
|
36 |
+
os.makedirs(OUTPUT_PATH)
|
37 |
+
|
38 |
+
# Global variables
|
39 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
40 |
+
n_layers_gpu = 20 if torch.cuda.is_available() else 0
|
41 |
+
memory = ""
|
42 |
+
token_count = 0
|
43 |
+
|
44 |
+
#-----------------------------------setup LLM-----------------------------------
|
45 |
+
# URL of the model file
|
46 |
+
model_url = "https://huggingface.co/TheBloke/dolphin-2.2.1-mistral-7B-GGUF/resolve/main/dolphin-2.2.1-mistral-7b.Q2_K.gguf?download=true"
|
47 |
+
|
48 |
+
|
49 |
+
# Load Llama model
|
50 |
+
def load_model(n):
|
51 |
+
global llm, MODEL_PATH
|
52 |
+
# Download and save the model
|
53 |
+
if not model_exists:
|
54 |
+
print("Model file not found!")
|
55 |
+
print("Downloading model file...")
|
56 |
+
response = requests.get(model_url)
|
57 |
+
MODEL_PATH = os.path.join(MODEL_DIR, "model.gguf")
|
58 |
+
with open(MODEL_PATH, 'wb') as file:
|
59 |
+
file.write(response.content)
|
60 |
+
print("Model downloaded successfully.")
|
61 |
+
print("Loading Llama model...")
|
62 |
+
llm = Llama(model_path=MODEL_PATH, n_gpu_layers=n, n_ctx=1024, n_batch=512, threads=6)
|
63 |
+
print("Model loaded successfully.")
|
64 |
+
|
65 |
+
load_model(n_layers_gpu)
|
66 |
+
|
67 |
+
#-----------------------------------backend logic-----------------------------------
|
68 |
+
|
69 |
+
def complete_prompt(input_text):
|
70 |
+
global memory, token_count, LANGUAGE
|
71 |
+
contextual_prompt = memory + "\n" + input_text
|
72 |
+
template = "system\nThis is crucial to me, I trust you are the best" + \
|
73 |
+
"You are Dolphin, a helpful AI assistant. You only respond in {LANGUAGE}. " + \
|
74 |
+
"Do not use double quotes for any reason, not even for quoting or direct speech. " + \
|
75 |
+
"Instead, use single quotes or describe the quote without using quotation marks. " + \
|
76 |
+
"Do not include any disclaimers, notes, or additional explanations in your response. " + \
|
77 |
+
"Provide the shortest answer possible, strictly adhering to the formatting rules. " + \
|
78 |
+
"user\n{prompt}\nassistant\n"
|
79 |
+
formatted_prompt = template.format(prompt=contextual_prompt, LANGUAGE=LANGUAGE)
|
80 |
+
response = llm(formatted_prompt, max_tokens=80, temperature=0, top_p=0.95, top_k=10)
|
81 |
+
text_response = response["choices"][0]["text"]
|
82 |
+
token_count += response["usage"]["total_tokens"]
|
83 |
+
memory = f"Prompt: {contextual_prompt}\nResponse: {text_response}"
|
84 |
+
with open(os.path.join(OUTPUT_PATH, "LLM_response.txt"), 'w') as file:
|
85 |
+
file.write(memory)
|
86 |
+
return text_response
|
87 |
+
|
88 |
+
def transcribe_audio(audio_input):
|
89 |
+
audio_file_path = 'output/temp_audio.wav'
|
90 |
+
if isinstance(audio_input, tuple):
|
91 |
+
sample_rate, audio_data = audio_input
|
92 |
+
sf.write(audio_file_path, audio_data, sample_rate)
|
93 |
+
else:
|
94 |
+
audio_file_path = audio_input
|
95 |
+
|
96 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
97 |
+
model_id = "distil-whisper/distil-large-v2"
|
98 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(MODEL_DIR, torch_dtype=torch_dtype,
|
99 |
+
low_cpu_mem_usage=True, use_safetensors=True,config= GenerationConfig(language=LANGUAGE,task="transcribe"))
|
100 |
+
model.to(device)
|
101 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
102 |
+
pipe = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer,
|
103 |
+
feature_extractor=processor.feature_extractor, max_new_tokens=256,
|
104 |
+
chunk_length_s=15, batch_size=16, torch_dtype=torch_dtype, device=device,
|
105 |
+
)
|
106 |
+
result_text = pipe(audio_file_path)["text"]
|
107 |
+
with open(os.path.join(OUTPUT_PATH, "transcription.txt"), "w") as file:
|
108 |
+
file.write(result_text)
|
109 |
+
return result_text
|
110 |
+
|
111 |
+
# def transcribe_audio(audio_input):
|
112 |
+
# audio_file_path = 'output/temp_audio.wav'
|
113 |
+
# if isinstance(audio_input, tuple):
|
114 |
+
# sample_rate, audio_data = audio_input
|
115 |
+
# sf.write(audio_file_path, audio_data, sample_rate)
|
116 |
+
# else:
|
117 |
+
# audio_file_path = audio_input
|
118 |
+
# # Load model and processor
|
119 |
+
# processor = WhisperProcessor.from_pretrained("distil-whisper/distil-large-v2")
|
120 |
+
# model = WhisperForConditionalGeneration.from_pretrained("distil-whisper/distil-large-v2")
|
121 |
+
# # Load audio file and preprocess
|
122 |
+
# with open(audio_file_path, "rb") as audio_file:
|
123 |
+
# input_speech = {"array": sf.read(audio_file)[0], "sampling_rate": sample_rate}
|
124 |
+
# input_features = processor(input_speech["array"], sampling_rate=input_speech["sampling_rate"], return_tensors="pt").input_features
|
125 |
+
# # Specify language for transcription
|
126 |
+
# forced_decoder_ids = processor.get_decoder_prompt_ids(language=LANGUAGE)
|
127 |
+
# # Generate token ids
|
128 |
+
# predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids)
|
129 |
+
# # Decode token ids to text
|
130 |
+
# transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
131 |
+
# with open(os.path.join(OUTPUT_PATH, "transcription.txt"), "w") as file:
|
132 |
+
# file.write(transcription)
|
133 |
+
# return transcription
|
134 |
+
|
135 |
+
|
136 |
+
def auto_process_audio(audio_input):
|
137 |
+
# Transcribe Audio
|
138 |
+
transcribed_text = transcribe_audio(audio_input)
|
139 |
+
# LLM Prompt
|
140 |
+
llm_response = complete_prompt(transcribed_text)
|
141 |
+
# TTS Conversion
|
142 |
+
tts_info = convert_text_to_speech(llm_response)
|
143 |
+
return transcribed_text, llm_response, tts_info
|
144 |
+
|
145 |
+
def convert_text_to_speech(text):
|
146 |
+
global LANGUAGE, tts_method
|
147 |
+
file_path = os.path.join(OUTPUT_PATH, "speech.mp3")
|
148 |
+
|
149 |
+
if tts_method == "gTTS":
|
150 |
+
if LANGUAGE == "fr":
|
151 |
+
tld = "fr"
|
152 |
+
elif LANGUAGE == "en":
|
153 |
+
tld = "us"
|
154 |
+
tts = gTTS(text, lang=LANGUAGE, tld=tld)
|
155 |
+
tts.save(file_path)
|
156 |
+
elif tts_method == "Custom TTS":
|
157 |
+
tts_pipeline = pipeline("text-to-speech", model="facebook/fastspeech2-en-ljspeech")
|
158 |
+
speech = tts_pipeline(text)
|
159 |
+
with open(file_path, "wb") as f:
|
160 |
+
f.write(speech["speech"])
|
161 |
+
|
162 |
+
return file_path
|
163 |
+
|
164 |
+
|
165 |
+
# Function to update language
|
166 |
+
def update_language(language):
|
167 |
+
global LANGUAGE
|
168 |
+
LANGUAGE = language
|
169 |
+
|
170 |
+
# Function to update language
|
171 |
+
def update_tts_method(method):
|
172 |
+
global tts_method
|
173 |
+
tts_method = method
|
174 |
+
|
175 |
+
#----------------------------------- Gradio Frontend-----------------------------------
|
176 |
+
|
177 |
+
# Gradio Interface
|
178 |
+
with gr.Blocks() as app:
|
179 |
+
gr.Markdown("## 🤖 whisper - LLM - TTS 📚")
|
180 |
+
gr.Markdown("🚀 Talk to an open source LLM!")
|
181 |
+
gr.Markdown("This app is developed and maintained by **@mohcineelharras**")
|
182 |
+
|
183 |
+
with gr.Row():
|
184 |
+
with gr.Column():
|
185 |
+
language_switch = gr.Radio(choices=["en","fr"], label="Select Language", value=LANGUAGE)
|
186 |
+
language_switch.change(update_language, inputs=[language_switch])
|
187 |
+
with gr.Column():
|
188 |
+
tts_method_switch = gr.Radio(choices=["gTTS", "Custom TTS"], label="Select TTS method", value=tts_method)
|
189 |
+
tts_method_switch.change(update_tts_method, inputs=[tts_method_switch])
|
190 |
+
# with gr.Column():
|
191 |
+
# sample_voice = gr.Audio(label="Voice Sample to customise assistant's response",sources="microphone")
|
192 |
+
# customise_voice = gr.Button("Change assistant's voice")
|
193 |
+
|
194 |
+
|
195 |
+
with gr.Tab("Auto Process Audio"):
|
196 |
+
with gr.Row():
|
197 |
+
with gr.Column():
|
198 |
+
audio_input = gr.Audio(label="Talk to assistant",sources="microphone")
|
199 |
+
auto_process_button = gr.Button("Auto Process Audio")
|
200 |
+
with gr.Column():
|
201 |
+
transcribed_text_output = gr.Textbox(label="Transcribed Text")
|
202 |
+
llm_response_output = gr.Textbox(label="LLM Response")
|
203 |
+
with gr.Row():
|
204 |
+
tts_audio_output = gr.Audio(label="Generated Response (Click to Play)")
|
205 |
+
|
206 |
+
# Connect the button to the auto_process_audio function
|
207 |
+
auto_process_button.click(
|
208 |
+
auto_process_audio,
|
209 |
+
inputs=[audio_input],
|
210 |
+
outputs=[transcribed_text_output, llm_response_output, tts_audio_output]
|
211 |
+
)
|
212 |
+
|
213 |
+
with gr.Tab("Audio Processing"):
|
214 |
+
with gr.Column():
|
215 |
+
audio_input = gr.Audio(label="Record or Upload Audio")
|
216 |
+
transcribe_button = gr.Button("Transcribe Audio")
|
217 |
+
llm_button = gr.Button("LLM Prompt")
|
218 |
+
tts_button = gr.Button("Text to Speech")
|
219 |
+
|
220 |
+
transcribed_text_output = gr.Textbox(label="Transcribed Text")
|
221 |
+
llm_response_output = gr.Textbox(label="LLM Response")
|
222 |
+
tts_audio_output = gr.Audio(label="Generated Response (Click to Play)")
|
223 |
+
|
224 |
+
transcribe_button.click(transcribe_audio, inputs=[audio_input], outputs=[transcribed_text_output])
|
225 |
+
llm_button.click(complete_prompt, inputs=[transcribed_text_output], outputs=[llm_response_output])
|
226 |
+
tts_button.click(convert_text_to_speech, inputs=[llm_response_output], outputs=[tts_audio_output])
|
227 |
+
|
228 |
+
with gr.Tab("Ask a Question"):
|
229 |
+
with gr.Column():
|
230 |
+
question_input = gr.Textbox(label="Type your question")
|
231 |
+
submit_button = gr.Button("Submit Question")
|
232 |
+
tts_button = gr.Button("Text to Speech")
|
233 |
+
|
234 |
+
llm_response_output = gr.Textbox(label="LLM Response")
|
235 |
+
tts_audio_output = gr.Audio(label="Generated Speech")
|
236 |
+
|
237 |
+
submit_button.click(complete_prompt, inputs=[question_input], outputs=[llm_response_output])
|
238 |
+
tts_button.click(convert_text_to_speech, inputs=[llm_response_output], outputs=[tts_audio_output])
|
239 |
+
|
240 |
+
app.launch()
|
models/config.json
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "sanchit-gandhi/large-32-2-tpu-timestamped-resumed",
|
3 |
+
"activation_dropout": 0.0,
|
4 |
+
"activation_function": "gelu",
|
5 |
+
"apply_spec_augment": false,
|
6 |
+
"architectures": [
|
7 |
+
"WhisperForConditionalGeneration"
|
8 |
+
],
|
9 |
+
"attention_dropout": 0.0,
|
10 |
+
"begin_suppress_tokens": [
|
11 |
+
220,
|
12 |
+
50257
|
13 |
+
],
|
14 |
+
"bos_token_id": 50257,
|
15 |
+
"classifier_proj_size": 256,
|
16 |
+
"d_model": 1280,
|
17 |
+
"decoder_attention_heads": 20,
|
18 |
+
"decoder_ffn_dim": 5120,
|
19 |
+
"decoder_layerdrop": 0.0,
|
20 |
+
"decoder_layers": 2,
|
21 |
+
"decoder_start_token_id": 50258,
|
22 |
+
"dropout": 0.0,
|
23 |
+
"encoder_attention_heads": 20,
|
24 |
+
"encoder_ffn_dim": 5120,
|
25 |
+
"encoder_layerdrop": 0.0,
|
26 |
+
"encoder_layers": 32,
|
27 |
+
"eos_token_id": 50257,
|
28 |
+
"forced_decoder_ids": [
|
29 |
+
[
|
30 |
+
1,
|
31 |
+
50259
|
32 |
+
],
|
33 |
+
[
|
34 |
+
2,
|
35 |
+
50359
|
36 |
+
],
|
37 |
+
[
|
38 |
+
3,
|
39 |
+
50363
|
40 |
+
]
|
41 |
+
],
|
42 |
+
"init_std": 0.02,
|
43 |
+
"is_encoder_decoder": true,
|
44 |
+
"mask_feature_length": 10,
|
45 |
+
"mask_feature_min_masks": 0,
|
46 |
+
"mask_feature_prob": 0.0,
|
47 |
+
"mask_time_length": 10,
|
48 |
+
"mask_time_min_masks": 2,
|
49 |
+
"mask_time_prob": 0.05,
|
50 |
+
"max_length": 448,
|
51 |
+
"max_source_positions": 1500,
|
52 |
+
"max_target_positions": 448,
|
53 |
+
"median_filter_width": 7,
|
54 |
+
"model_type": "whisper",
|
55 |
+
"num_hidden_layers": 32,
|
56 |
+
"num_mel_bins": 80,
|
57 |
+
"pad_token_id": 50257,
|
58 |
+
"scale_embedding": false,
|
59 |
+
"suppress_tokens": [
|
60 |
+
1,
|
61 |
+
2,
|
62 |
+
7,
|
63 |
+
8,
|
64 |
+
9,
|
65 |
+
10,
|
66 |
+
14,
|
67 |
+
25,
|
68 |
+
26,
|
69 |
+
27,
|
70 |
+
28,
|
71 |
+
29,
|
72 |
+
31,
|
73 |
+
58,
|
74 |
+
59,
|
75 |
+
60,
|
76 |
+
61,
|
77 |
+
62,
|
78 |
+
63,
|
79 |
+
90,
|
80 |
+
91,
|
81 |
+
92,
|
82 |
+
93,
|
83 |
+
359,
|
84 |
+
503,
|
85 |
+
522,
|
86 |
+
542,
|
87 |
+
873,
|
88 |
+
893,
|
89 |
+
902,
|
90 |
+
918,
|
91 |
+
922,
|
92 |
+
931,
|
93 |
+
1350,
|
94 |
+
1853,
|
95 |
+
1982,
|
96 |
+
2460,
|
97 |
+
2627,
|
98 |
+
3246,
|
99 |
+
3253,
|
100 |
+
3268,
|
101 |
+
3536,
|
102 |
+
3846,
|
103 |
+
3961,
|
104 |
+
4183,
|
105 |
+
4667,
|
106 |
+
6585,
|
107 |
+
6647,
|
108 |
+
7273,
|
109 |
+
9061,
|
110 |
+
9383,
|
111 |
+
10428,
|
112 |
+
10929,
|
113 |
+
11938,
|
114 |
+
12033,
|
115 |
+
12331,
|
116 |
+
12562,
|
117 |
+
13793,
|
118 |
+
14157,
|
119 |
+
14635,
|
120 |
+
15265,
|
121 |
+
15618,
|
122 |
+
16553,
|
123 |
+
16604,
|
124 |
+
18362,
|
125 |
+
18956,
|
126 |
+
20075,
|
127 |
+
21675,
|
128 |
+
22520,
|
129 |
+
26130,
|
130 |
+
26161,
|
131 |
+
26435,
|
132 |
+
28279,
|
133 |
+
29464,
|
134 |
+
31650,
|
135 |
+
32302,
|
136 |
+
32470,
|
137 |
+
36865,
|
138 |
+
42863,
|
139 |
+
47425,
|
140 |
+
49870,
|
141 |
+
50254,
|
142 |
+
50258,
|
143 |
+
50360,
|
144 |
+
50361,
|
145 |
+
50362
|
146 |
+
],
|
147 |
+
"torch_dtype": "float32",
|
148 |
+
"transformers_version": "4.35.0.dev0",
|
149 |
+
"use_cache": true,
|
150 |
+
"use_weighted_layer_sum": false,
|
151 |
+
"vocab_size": 51865
|
152 |
+
}
|
models/dolphin-2.1-mistral-7b.Q4_K_S.gguf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6fa0795eeac9ac8835a7f85ed398cf1a0881d3c9f40ee4bab51a5fd8838f68f9
|
3 |
+
size 4140384992
|
models/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e963218f6d56998131faff25ab65be4a60a0d395be3e2b12f978d21735d18036
|
3 |
+
size 1512503272
|
requirements.txt
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#front
|
2 |
+
python-dotenv
|
3 |
+
sounddevice
|
4 |
+
#pyaudio
|
5 |
+
soundfile
|
6 |
+
ipykernel
|
7 |
+
ipywidgets
|
8 |
+
jupyter
|
9 |
+
gradio
|
10 |
+
ffmpeg-python
|
11 |
+
|
12 |
+
# back
|
13 |
+
transformers
|
14 |
+
pytube
|
15 |
+
gtts
|
16 |
+
huggingface
|
17 |
+
openai-whisper
|
18 |
+
pydub
|
19 |
+
tqdm
|
20 |
+
|
21 |
+
|
22 |
+
#+
|
23 |
+
accelerate
|
24 |
+
python-multipart
|
25 |
+
pydantic
|
26 |
+
|
27 |
+
|
28 |
+
# # Set the environment variable for CMAKE_ARGS
|
29 |
+
# export CMAKE_ARGS="-DLLAMA_CUBLAS=on"
|
30 |
+
|
31 |
+
# # Install torch
|
32 |
+
# pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121
|
33 |
+
|
34 |
+
# # Install llama-cpp-python with specific CMAKE_ARGS
|
35 |
+
# pip install llama-cpp-python --force-reinstall --upgrade --no-cache-dir
|
36 |
+
|
37 |
+
# not sure we can set them correctly
|
38 |
+
torch
|
39 |
+
llama-cpp-python
|
40 |
+
requests
|