Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import streamlit as st
|
3 |
+
from dotenv import load_dotenv
|
4 |
+
from PyPDF2 import PdfReader
|
5 |
+
from langchain_openai import OpenAI, OpenAIEmbeddings
|
6 |
+
from langchain.prompts import PromptTemplate
|
7 |
+
from langchain.chains import LLMChain
|
8 |
+
from langchain_community.vectorstores import FAISS
|
9 |
+
|
10 |
+
# Load environment variables
|
11 |
+
load_dotenv()
|
12 |
+
openai_api_key = os.getenv('OPENAI_API_KEY')
|
13 |
+
|
14 |
+
# Initialize Streamlit session states
|
15 |
+
if 'vectorDB' not in st.session_state:
|
16 |
+
st.session_state.vectorDB = None
|
17 |
+
|
18 |
+
# Function to extract text from a PDF file
|
19 |
+
def get_pdf_text(pdf):
|
20 |
+
text = ""
|
21 |
+
pdf_reader = PdfReader(pdf)
|
22 |
+
for page in pdf_reader.pages:
|
23 |
+
text += page.extract_text()
|
24 |
+
return text
|
25 |
+
|
26 |
+
# Function to create a vector database
|
27 |
+
def get_vectorstore(text_chunks):
|
28 |
+
embeddings = OpenAIEmbeddings(api_key=openai_api_key)
|
29 |
+
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
|
30 |
+
return vectorstore
|
31 |
+
|
32 |
+
# Function to split text into chunks
|
33 |
+
def get_text_chunks(text):
|
34 |
+
text_chunks = text.split('\n\n') # Modify this based on your text splitting requirements
|
35 |
+
return text_chunks
|
36 |
+
|
37 |
+
# Function to process PDF and create vector database
|
38 |
+
def processing(pdf):
|
39 |
+
raw_text = get_pdf_text(pdf)
|
40 |
+
text_chunks = get_text_chunks(raw_text)
|
41 |
+
vectorDB = get_vectorstore(text_chunks)
|
42 |
+
return vectorDB
|
43 |
+
|
44 |
+
# Function to generate quiz questions
|
45 |
+
def generate_quiz(quiz_name, quiz_topic, num_questions, pdf_content):
|
46 |
+
st.header(f"Quiz Generator: {quiz_name}")
|
47 |
+
st.subheader(f"Topic: {quiz_topic}")
|
48 |
+
|
49 |
+
# Process PDF and create vector database
|
50 |
+
if st.button('Process PDF'):
|
51 |
+
st.session_state['vectorDB'] = processing(pdf_content)
|
52 |
+
st.success('PDF Processed and Vector Database Created')
|
53 |
+
|
54 |
+
# Generate Quiz Questions
|
55 |
+
for i in range(1, num_questions + 1):
|
56 |
+
st.subheader(f"Question {i}")
|
57 |
+
question = st.text_input(f"Enter Question {i}:", key=f"question_{i}")
|
58 |
+
options = []
|
59 |
+
for j in range(1, 5):
|
60 |
+
option = st.text_input(f"Option {j}:", key=f"option_{i}_{j}")
|
61 |
+
options.append(option)
|
62 |
+
|
63 |
+
correct_answer = st.selectbox(f"Correct Answer for Question {i}:", options=options, key=f"correct_answer_{i}")
|
64 |
+
|
65 |
+
# Save question, options, and correct answer in vector database
|
66 |
+
if st.session_state.vectorDB:
|
67 |
+
# Create a prompt template for question and options
|
68 |
+
template = f"Quiz: {quiz_name}\nTopic: {quiz_topic}\nQuestion: {question}\nOptions: {', '.join(options)}\nCorrect Answer: {correct_answer}"
|
69 |
+
prompt = PromptTemplate(template=template)
|
70 |
+
|
71 |
+
# Store question data in vector database
|
72 |
+
st.session_state.vectorDB.add(prompt.generate(), embedding=None)
|
73 |
+
|
74 |
+
# Save button to store vector database
|
75 |
+
if st.session_state.vectorDB:
|
76 |
+
if st.button('Save Vector Database'):
|
77 |
+
st.success('Vector Database Saved')
|
78 |
+
|
79 |
+
if __name__ =='__main__':
|
80 |
+
st.set_page_config(page_title="Quiz Generator", page_icon="📝")
|
81 |
+
st.title('Quiz Generator')
|
82 |
+
|
83 |
+
# User inputs
|
84 |
+
quiz_name = st.text_input('Enter Quiz Name:')
|
85 |
+
quiz_topic = st.text_input('Enter Quiz Topic:')
|
86 |
+
num_questions = st.number_input('Enter Number of Questions:', min_value=1, value=1, step=1)
|
87 |
+
pdf_content = st.file_uploader("Upload PDF Content for Questions:", type='pdf')
|
88 |
+
|
89 |
+
# Generate quiz if all inputs are provided
|
90 |
+
if quiz_name and quiz_topic and num_questions and pdf_content:
|
91 |
+
generate_quiz(quiz_name, quiz_topic, num_questions, pdf_content)
|