mohammadshahabiy commited on
Commit
2fb4300
·
verified ·
1 Parent(s): 45ee8fe

add falcon-7b to space

Browse files
Files changed (1) hide show
  1. app.py +17 -18
app.py CHANGED
@@ -1,11 +1,13 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
9
 
10
  def respond(
11
  message,
@@ -15,8 +17,10 @@ def respond(
15
  temperature,
16
  top_p,
17
  ):
 
18
  messages = [{"role": "system", "content": system_message}]
19
 
 
20
  for val in history:
21
  if val[0]:
22
  messages.append({"role": "user", "content": val[0]})
@@ -25,23 +29,19 @@ def respond(
25
 
26
  messages.append({"role": "user", "content": message})
27
 
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
  messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
  temperature=temperature,
35
  top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
 
 
42
 
43
  """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
  """
46
  demo = gr.ChatInterface(
47
  respond,
@@ -59,6 +59,5 @@ demo = gr.ChatInterface(
59
  ],
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
3
 
4
+ # بارگذاری مدل و توکن‌ایزر Falcon-7B-Instruct
5
+ model_name = "tiiuae/falcon-7b-instruct"
6
+ tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
7
+ model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
8
 
9
+ # ایجاد pipeline برای متن‌سازی
10
+ pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
11
 
12
  def respond(
13
  message,
 
17
  temperature,
18
  top_p,
19
  ):
20
+ # ساخت پیام‌ها برای مدل
21
  messages = [{"role": "system", "content": system_message}]
22
 
23
+ # اضافه کردن تاریخچه چت
24
  for val in history:
25
  if val[0]:
26
  messages.append({"role": "user", "content": val[0]})
 
29
 
30
  messages.append({"role": "user", "content": message})
31
 
32
+ # تولید پاسخ با استفاده از مدل
33
+ response = pipe(
 
34
  messages,
35
+ max_new_tokens=max_tokens,
 
36
  temperature=temperature,
37
  top_p=top_p,
38
+ do_sample=True,
39
+ )[0]["generated_text"]
 
 
 
40
 
41
+ yield response
42
 
43
  """
44
+ برای اطلاعات بیشتر در مورد تنظیمات ChatInterface، به مستندات Gradio مراجعه کنید: https://www.gradio.app/docs/chatinterface
45
  """
46
  demo = gr.ChatInterface(
47
  respond,
 
59
  ],
60
  )
61
 
 
62
  if __name__ == "__main__":
63
+ demo.launch()