MRasheq commited on
Commit
06275cb
·
1 Parent(s): 2022648

Fifth commit

Browse files
Files changed (1) hide show
  1. app.py +55 -57
app.py CHANGED
@@ -248,62 +248,60 @@ def train_model(
248
 
249
  # Create Gradio interface
250
  def create_interface():
251
- demo = gr.Interface(
252
- # Configure Gradio to handle larger file uploads
253
- upload_size_limit=100
254
- )
255
-
256
- with gr.Row():
257
- with gr.Column():
258
- file_input = gr.File(
259
- label="Upload Training Data (CSV)",
260
- type="binary",
261
- file_types=[".csv"]
262
- )
263
-
264
- learning_rate = gr.Slider(
265
- minimum=1e-5,
266
- maximum=1e-3,
267
- value=2e-4,
268
- label="Learning Rate"
269
- )
270
-
271
- num_epochs = gr.Slider(
272
- minimum=1,
273
- maximum=10,
274
- value=3,
275
- step=1,
276
- label="Number of Epochs"
277
- )
278
-
279
- batch_size = gr.Slider(
280
- minimum=1,
281
- maximum=8,
282
- value=4,
283
- step=1,
284
- label="Batch Size"
285
- )
286
-
287
- train_button = gr.Button("Start Training")
288
-
289
- with gr.Column():
290
- output = gr.Textbox(label="Training Status")
291
-
292
- train_button.click(
293
- fn=train_model,
294
- inputs=[file_input, learning_rate, num_epochs, batch_size],
295
- outputs=output
296
- )
297
-
298
- gr.Markdown("""
299
- ## Instructions
300
- 1. Upload your training data in CSV format with columns:
301
- - chunk_id (questions)
302
- - text (answers)
303
- 2. Adjust training parameters if needed
304
- 3. Click 'Start Training'
305
- 4. Wait for training to complete
306
- """)
307
 
308
  return demo
309
 
@@ -314,4 +312,4 @@ if __name__ == "__main__":
314
 
315
  # Launch Gradio interface
316
  demo = create_interface()
317
- demo.launch(share=True)
 
248
 
249
  # Create Gradio interface
250
  def create_interface():
251
+ # Configure Gradio to handle larger file uploads
252
+ gr.Config(upload_size_limit=100)
253
+
254
+ with gr.Row():
255
+ with gr.Column():
256
+ file_input = gr.File(
257
+ label="Upload Training Data (CSV)",
258
+ type="binary",
259
+ file_types=[".csv"]
260
+ )
261
+
262
+ learning_rate = gr.Slider(
263
+ minimum=1e-5,
264
+ maximum=1e-3,
265
+ value=2e-4,
266
+ label="Learning Rate"
267
+ )
268
+
269
+ num_epochs = gr.Slider(
270
+ minimum=1,
271
+ maximum=10,
272
+ value=3,
273
+ step=1,
274
+ label="Number of Epochs"
275
+ )
276
+
277
+ batch_size = gr.Slider(
278
+ minimum=1,
279
+ maximum=8,
280
+ value=4,
281
+ step=1,
282
+ label="Batch Size"
283
+ )
284
+
285
+ train_button = gr.Button("Start Training")
286
+
287
+ with gr.Column():
288
+ output = gr.Textbox(label="Training Status")
289
+
290
+ train_button.click(
291
+ fn=train_model,
292
+ inputs=[file_input, learning_rate, num_epochs, batch_size],
293
+ outputs=output
294
+ )
295
+
296
+ gr.Markdown("""
297
+ ## Instructions
298
+ 1. Upload your training data in CSV format with columns:
299
+ - chunk_id (questions)
300
+ - text (answers)
301
+ 2. Adjust training parameters if needed
302
+ 3. Click 'Start Training'
303
+ 4. Wait for training to complete
304
+ """)
 
 
305
 
306
  return demo
307
 
 
312
 
313
  # Launch Gradio interface
314
  demo = create_interface()
315
+ demo.launch(share=True, server_port=7860, server_name="0.0.0.0", max_upload_size=100)