Spaces:
Sleeping
Sleeping
Fifth commit
Browse files
app.py
CHANGED
@@ -248,62 +248,60 @@ def train_model(
|
|
248 |
|
249 |
# Create Gradio interface
|
250 |
def create_interface():
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
4. Wait for training to complete
|
306 |
-
""")
|
307 |
|
308 |
return demo
|
309 |
|
@@ -314,4 +312,4 @@ if __name__ == "__main__":
|
|
314 |
|
315 |
# Launch Gradio interface
|
316 |
demo = create_interface()
|
317 |
-
demo.launch(share=True)
|
|
|
248 |
|
249 |
# Create Gradio interface
|
250 |
def create_interface():
|
251 |
+
# Configure Gradio to handle larger file uploads
|
252 |
+
gr.Config(upload_size_limit=100)
|
253 |
+
|
254 |
+
with gr.Row():
|
255 |
+
with gr.Column():
|
256 |
+
file_input = gr.File(
|
257 |
+
label="Upload Training Data (CSV)",
|
258 |
+
type="binary",
|
259 |
+
file_types=[".csv"]
|
260 |
+
)
|
261 |
+
|
262 |
+
learning_rate = gr.Slider(
|
263 |
+
minimum=1e-5,
|
264 |
+
maximum=1e-3,
|
265 |
+
value=2e-4,
|
266 |
+
label="Learning Rate"
|
267 |
+
)
|
268 |
+
|
269 |
+
num_epochs = gr.Slider(
|
270 |
+
minimum=1,
|
271 |
+
maximum=10,
|
272 |
+
value=3,
|
273 |
+
step=1,
|
274 |
+
label="Number of Epochs"
|
275 |
+
)
|
276 |
+
|
277 |
+
batch_size = gr.Slider(
|
278 |
+
minimum=1,
|
279 |
+
maximum=8,
|
280 |
+
value=4,
|
281 |
+
step=1,
|
282 |
+
label="Batch Size"
|
283 |
+
)
|
284 |
+
|
285 |
+
train_button = gr.Button("Start Training")
|
286 |
+
|
287 |
+
with gr.Column():
|
288 |
+
output = gr.Textbox(label="Training Status")
|
289 |
+
|
290 |
+
train_button.click(
|
291 |
+
fn=train_model,
|
292 |
+
inputs=[file_input, learning_rate, num_epochs, batch_size],
|
293 |
+
outputs=output
|
294 |
+
)
|
295 |
+
|
296 |
+
gr.Markdown("""
|
297 |
+
## Instructions
|
298 |
+
1. Upload your training data in CSV format with columns:
|
299 |
+
- chunk_id (questions)
|
300 |
+
- text (answers)
|
301 |
+
2. Adjust training parameters if needed
|
302 |
+
3. Click 'Start Training'
|
303 |
+
4. Wait for training to complete
|
304 |
+
""")
|
|
|
|
|
305 |
|
306 |
return demo
|
307 |
|
|
|
312 |
|
313 |
# Launch Gradio interface
|
314 |
demo = create_interface()
|
315 |
+
demo.launch(share=True, server_port=7860, server_name="0.0.0.0", max_upload_size=100)
|