Spaces:
Sleeping
Sleeping
File size: 6,457 Bytes
c643b82 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
import os
import json
import gradio as gr
import torch
from transformers import (
TrainingArguments,
Trainer,
AutoModelForCausalLM,
AutoTokenizer,
DataCollatorForLanguageModeling
)
from datasets import Dataset
from peft import (
prepare_model_for_kbit_training,
LoraConfig,
get_peft_model
)
# Constants
MODEL_NAME = "deepseek-ai/DeepSeek-R1"
OUTPUT_DIR = "finetuned_models"
LOGS_DIR = "training_logs"
def save_uploaded_file(file):
"""Save uploaded file and return its path"""
os.makedirs('uploads', exist_ok=True)
file_path = os.path.join('uploads', file.name)
with open(file_path, 'wb') as f:
f.write(file.read())
return file_path
def prepare_training_components(
data_path,
learning_rate,
num_epochs,
batch_size,
model_name=MODEL_NAME
):
"""Prepare model, tokenizer, and training arguments"""
# Create output directory with timestamp
import time
timestamp = time.strftime("%Y%m%d_%H%M%S")
specific_output_dir = os.path.join(OUTPUT_DIR, f"run_{timestamp}")
os.makedirs(specific_output_dir, exist_ok=True)
os.makedirs(LOGS_DIR, exist_ok=True)
# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_name,
trust_remote_code=True,
torch_dtype=torch.float16,
load_in_8bit=True
)
# LoRA Configuration
lora_config = LoraConfig(
r=16,
lora_alpha=32,
target_modules=[
"q_proj", "k_proj", "v_proj", "o_proj",
"gate_proj", "up_proj", "down_proj"
],
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM"
)
# Prepare model
model = prepare_model_for_kbit_training(model)
model = get_peft_model(model, lora_config)
# Training Arguments
training_args = TrainingArguments(
output_dir=specific_output_dir,
num_train_epochs=num_epochs,
per_device_train_batch_size=batch_size,
learning_rate=learning_rate,
fp16=True,
gradient_accumulation_steps=8,
gradient_checkpointing=True,
logging_dir=os.path.join(LOGS_DIR, f"run_{timestamp}"),
logging_steps=10,
save_strategy="epoch",
evaluation_strategy="epoch",
save_total_limit=2,
)
# Load and prepare dataset
with open(data_path, 'r') as f:
raw_data = json.load(f)
# Convert to datasets format
dataset = Dataset.from_dict({
'text': [item['text'] for item in raw_data]
})
# Create data collator
data_collator = DataCollatorForLanguageModeling(
tokenizer=tokenizer,
mlm=False
)
return {
'model': model,
'tokenizer': tokenizer,
'training_args': training_args,
'dataset': dataset,
'data_collator': data_collator,
'output_dir': specific_output_dir
}
def train_model(
file,
learning_rate=2e-4,
num_epochs=3,
batch_size=4,
progress=gr.Progress()
):
"""Training function for Gradio interface"""
try:
# Save uploaded file
file_path = save_uploaded_file(file)
# Prepare components
progress(0.2, desc="Preparing training components...")
components = prepare_training_components(
file_path,
learning_rate,
num_epochs,
batch_size
)
# Initialize trainer
progress(0.4, desc="Initializing trainer...")
trainer = Trainer(
model=components['model'],
args=components['training_args'],
train_dataset=components['dataset'],
data_collator=components['data_collator'],
)
# Train
progress(0.5, desc="Training model...")
trainer.train()
# Save model and tokenizer
progress(0.9, desc="Saving model...")
trainer.save_model()
components['tokenizer'].save_pretrained(components['output_dir'])
progress(1.0, desc="Training complete!")
return f"Training completed! Model saved in {components['output_dir']}"
except Exception as e:
return f"Error during training: {str(e)}"
# Create Gradio interface
def create_interface():
with gr.Blocks() as demo:
gr.Markdown("# DeepSeek-R1 Model Finetuning Interface")
with gr.Row():
with gr.Column():
file_input = gr.File(
label="Upload Training Data (JSON)",
type="binary",
file_types=[".json"]
)
learning_rate = gr.Slider(
minimum=1e-5,
maximum=1e-3,
value=2e-4,
label="Learning Rate"
)
num_epochs = gr.Slider(
minimum=1,
maximum=10,
value=3,
step=1,
label="Number of Epochs"
)
batch_size = gr.Slider(
minimum=1,
maximum=8,
value=4,
step=1,
label="Batch Size"
)
train_button = gr.Button("Start Training")
with gr.Column():
output = gr.Textbox(label="Training Status")
train_button.click(
fn=train_model,
inputs=[file_input, learning_rate, num_epochs, batch_size],
outputs=output
)
gr.Markdown("""
## Instructions
1. Upload your training data in JSON format:
```json
[
{"text": "User: Question\nAssistant: Answer"},
{"text": "User: Another question\nAssistant: Another answer"}
]
```
2. Adjust training parameters if needed
3. Click 'Start Training'
4. Wait for training to complete
""")
return demo
if __name__ == "__main__":
# Create necessary directories
os.makedirs(OUTPUT_DIR, exist_ok=True)
os.makedirs(LOGS_DIR, exist_ok=True)
# Launch Gradio interface
demo = create_interface()
demo.launch(share=True) |