Spaces:
Sleeping
Sleeping
Second Commit
Browse files
app.py
CHANGED
@@ -20,10 +20,10 @@ from peft import (
|
|
20 |
)
|
21 |
from datetime import datetime
|
22 |
|
23 |
-
#
|
24 |
-
MODEL_NAME = "deepseek-ai/
|
25 |
-
OUTPUT_DIR = "/tmp/finetuned_models"
|
26 |
-
LOGS_DIR = "/tmp/training_logs"
|
27 |
|
28 |
class TrainingInterface:
|
29 |
def __init__(self):
|
@@ -32,14 +32,12 @@ class TrainingInterface:
|
|
32 |
self.is_training = False
|
33 |
|
34 |
def get_database_url(self):
|
35 |
-
"""Get database URL from HF Space secrets"""
|
36 |
database_url = os.environ.get('DATABASE_URL')
|
37 |
if not database_url:
|
38 |
raise Exception("DATABASE_URL not found in environment variables")
|
39 |
return database_url
|
40 |
|
41 |
def fetch_training_data(self, progress=gr.Progress()):
|
42 |
-
"""Fetch training data from database"""
|
43 |
try:
|
44 |
database_url = self.get_database_url()
|
45 |
engine = create_engine(database_url)
|
@@ -60,7 +58,6 @@ class TrainingInterface:
|
|
60 |
raise gr.Error(f"Database error: {str(e)}")
|
61 |
|
62 |
def prepare_training_data(self, df, progress=gr.Progress()):
|
63 |
-
"""Convert DataFrame into training format"""
|
64 |
formatted_data = []
|
65 |
try:
|
66 |
total_rows = len(df)
|
@@ -71,7 +68,7 @@ class TrainingInterface:
|
|
71 |
text = str(row_data['text']).strip()
|
72 |
|
73 |
if chunk_id and text:
|
74 |
-
formatted_text = f"
|
75 |
formatted_data.append({"text": formatted_text})
|
76 |
|
77 |
if not formatted_data:
|
@@ -82,7 +79,6 @@ class TrainingInterface:
|
|
82 |
raise gr.Error(f"Data preparation error: {str(e)}")
|
83 |
|
84 |
def stop_training(self):
|
85 |
-
"""Stop the training process"""
|
86 |
self.is_training = False
|
87 |
return "Training stopped by user."
|
88 |
|
@@ -93,17 +89,14 @@ class TrainingInterface:
|
|
93 |
batch_size=4,
|
94 |
progress=gr.Progress()
|
95 |
):
|
96 |
-
"""Main training function"""
|
97 |
try:
|
98 |
self.is_training = True
|
99 |
|
100 |
-
# Create directories in /tmp for HF Spaces
|
101 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
102 |
specific_output_dir = os.path.join(OUTPUT_DIR, f"run_{timestamp}")
|
103 |
os.makedirs(specific_output_dir, exist_ok=True)
|
104 |
os.makedirs(LOGS_DIR, exist_ok=True)
|
105 |
|
106 |
-
# Data preparation
|
107 |
progress(0.1, desc="Fetching data...")
|
108 |
if not self.is_training:
|
109 |
return "Training cancelled."
|
@@ -111,32 +104,27 @@ class TrainingInterface:
|
|
111 |
df = self.fetch_training_data()
|
112 |
formatted_data = self.prepare_training_data(df)
|
113 |
|
114 |
-
# Model initialization
|
115 |
progress(0.2, desc="Loading model...")
|
116 |
if not self.is_training:
|
117 |
return "Training cancelled."
|
118 |
|
119 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME
|
120 |
model = AutoModelForCausalLM.from_pretrained(
|
121 |
MODEL_NAME,
|
122 |
-
trust_remote_code=True,
|
123 |
torch_dtype=torch.float16,
|
124 |
load_in_8bit=True,
|
125 |
-
device_map="auto"
|
126 |
)
|
127 |
|
128 |
-
# LoRA configuration
|
129 |
progress(0.3, desc="Setting up LoRA...")
|
130 |
if not self.is_training:
|
131 |
return "Training cancelled."
|
132 |
|
|
|
133 |
lora_config = LoraConfig(
|
134 |
r=16,
|
135 |
lora_alpha=32,
|
136 |
-
target_modules=[
|
137 |
-
"q_proj", "k_proj", "v_proj", "o_proj",
|
138 |
-
"gate_proj", "up_proj", "down_proj"
|
139 |
-
],
|
140 |
lora_dropout=0.05,
|
141 |
bias="none",
|
142 |
task_type="CAUSAL_LM"
|
@@ -145,7 +133,6 @@ class TrainingInterface:
|
|
145 |
model = prepare_model_for_kbit_training(model)
|
146 |
model = get_peft_model(model, lora_config)
|
147 |
|
148 |
-
# Training setup
|
149 |
progress(0.4, desc="Configuring training...")
|
150 |
if not self.is_training:
|
151 |
return "Training cancelled."
|
@@ -161,9 +148,9 @@ class TrainingInterface:
|
|
161 |
logging_dir=os.path.join(LOGS_DIR, f"run_{timestamp}"),
|
162 |
logging_steps=10,
|
163 |
save_strategy="epoch",
|
164 |
-
evaluation_strategy="
|
165 |
save_total_limit=2,
|
166 |
-
remove_unused_columns=False,
|
167 |
)
|
168 |
|
169 |
dataset = Dataset.from_dict({
|
@@ -175,7 +162,6 @@ class TrainingInterface:
|
|
175 |
mlm=False
|
176 |
)
|
177 |
|
178 |
-
# Custom progress callback
|
179 |
class ProgressCallback(gr.Progress):
|
180 |
def __init__(self, progress_callback, training_interface):
|
181 |
self.progress_callback = progress_callback
|
@@ -210,7 +196,6 @@ class TrainingInterface:
|
|
210 |
if not self.is_training:
|
211 |
return "Training cancelled."
|
212 |
|
213 |
-
# Save model
|
214 |
progress(0.9, desc="Saving model...")
|
215 |
trainer.save_model()
|
216 |
tokenizer.save_pretrained(specific_output_dir)
|
@@ -223,11 +208,10 @@ class TrainingInterface:
|
|
223 |
raise gr.Error(f"Training error: {str(e)}")
|
224 |
|
225 |
def create_training_interface():
|
226 |
-
"""Create Gradio interface"""
|
227 |
interface = TrainingInterface()
|
228 |
|
229 |
-
with gr.Blocks(title="DeepSeek
|
230 |
-
gr.Markdown("# DeepSeek
|
231 |
|
232 |
with gr.Row():
|
233 |
with gr.Column():
|
|
|
20 |
)
|
21 |
from datetime import datetime
|
22 |
|
23 |
+
# Changed to a model that doesn't require flash-attention
|
24 |
+
MODEL_NAME = "deepseek-ai/deepseek-coder-6.7b-base"
|
25 |
+
OUTPUT_DIR = "/tmp/finetuned_models"
|
26 |
+
LOGS_DIR = "/tmp/training_logs"
|
27 |
|
28 |
class TrainingInterface:
|
29 |
def __init__(self):
|
|
|
32 |
self.is_training = False
|
33 |
|
34 |
def get_database_url(self):
|
|
|
35 |
database_url = os.environ.get('DATABASE_URL')
|
36 |
if not database_url:
|
37 |
raise Exception("DATABASE_URL not found in environment variables")
|
38 |
return database_url
|
39 |
|
40 |
def fetch_training_data(self, progress=gr.Progress()):
|
|
|
41 |
try:
|
42 |
database_url = self.get_database_url()
|
43 |
engine = create_engine(database_url)
|
|
|
58 |
raise gr.Error(f"Database error: {str(e)}")
|
59 |
|
60 |
def prepare_training_data(self, df, progress=gr.Progress()):
|
|
|
61 |
formatted_data = []
|
62 |
try:
|
63 |
total_rows = len(df)
|
|
|
68 |
text = str(row_data['text']).strip()
|
69 |
|
70 |
if chunk_id and text:
|
71 |
+
formatted_text = f"Question: {chunk_id}\nAnswer: {text}" # Changed format for deepseek-coder
|
72 |
formatted_data.append({"text": formatted_text})
|
73 |
|
74 |
if not formatted_data:
|
|
|
79 |
raise gr.Error(f"Data preparation error: {str(e)}")
|
80 |
|
81 |
def stop_training(self):
|
|
|
82 |
self.is_training = False
|
83 |
return "Training stopped by user."
|
84 |
|
|
|
89 |
batch_size=4,
|
90 |
progress=gr.Progress()
|
91 |
):
|
|
|
92 |
try:
|
93 |
self.is_training = True
|
94 |
|
|
|
95 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
96 |
specific_output_dir = os.path.join(OUTPUT_DIR, f"run_{timestamp}")
|
97 |
os.makedirs(specific_output_dir, exist_ok=True)
|
98 |
os.makedirs(LOGS_DIR, exist_ok=True)
|
99 |
|
|
|
100 |
progress(0.1, desc="Fetching data...")
|
101 |
if not self.is_training:
|
102 |
return "Training cancelled."
|
|
|
104 |
df = self.fetch_training_data()
|
105 |
formatted_data = self.prepare_training_data(df)
|
106 |
|
|
|
107 |
progress(0.2, desc="Loading model...")
|
108 |
if not self.is_training:
|
109 |
return "Training cancelled."
|
110 |
|
111 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
112 |
model = AutoModelForCausalLM.from_pretrained(
|
113 |
MODEL_NAME,
|
|
|
114 |
torch_dtype=torch.float16,
|
115 |
load_in_8bit=True,
|
116 |
+
device_map="auto"
|
117 |
)
|
118 |
|
|
|
119 |
progress(0.3, desc="Setting up LoRA...")
|
120 |
if not self.is_training:
|
121 |
return "Training cancelled."
|
122 |
|
123 |
+
# Updated LoRA config for deepseek-coder model
|
124 |
lora_config = LoraConfig(
|
125 |
r=16,
|
126 |
lora_alpha=32,
|
127 |
+
target_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
|
|
|
|
|
|
|
128 |
lora_dropout=0.05,
|
129 |
bias="none",
|
130 |
task_type="CAUSAL_LM"
|
|
|
133 |
model = prepare_model_for_kbit_training(model)
|
134 |
model = get_peft_model(model, lora_config)
|
135 |
|
|
|
136 |
progress(0.4, desc="Configuring training...")
|
137 |
if not self.is_training:
|
138 |
return "Training cancelled."
|
|
|
148 |
logging_dir=os.path.join(LOGS_DIR, f"run_{timestamp}"),
|
149 |
logging_steps=10,
|
150 |
save_strategy="epoch",
|
151 |
+
evaluation_strategy="no", # Changed to "no" since we don't have eval data
|
152 |
save_total_limit=2,
|
153 |
+
remove_unused_columns=False,
|
154 |
)
|
155 |
|
156 |
dataset = Dataset.from_dict({
|
|
|
162 |
mlm=False
|
163 |
)
|
164 |
|
|
|
165 |
class ProgressCallback(gr.Progress):
|
166 |
def __init__(self, progress_callback, training_interface):
|
167 |
self.progress_callback = progress_callback
|
|
|
196 |
if not self.is_training:
|
197 |
return "Training cancelled."
|
198 |
|
|
|
199 |
progress(0.9, desc="Saving model...")
|
200 |
trainer.save_model()
|
201 |
tokenizer.save_pretrained(specific_output_dir)
|
|
|
208 |
raise gr.Error(f"Training error: {str(e)}")
|
209 |
|
210 |
def create_training_interface():
|
|
|
211 |
interface = TrainingInterface()
|
212 |
|
213 |
+
with gr.Blocks(title="DeepSeek Coder Training Interface") as app:
|
214 |
+
gr.Markdown("# DeepSeek Coder Fine-tuning Interface")
|
215 |
|
216 |
with gr.Row():
|
217 |
with gr.Column():
|