Spaces:
Sleeping
Sleeping
File size: 10,018 Bytes
00941a5 415487e 00941a5 415487e 00941a5 415487e 00941a5 415487e 00941a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
# app.py
import os
import json
import torch
import pandas as pd
import gradio as gr
from sqlalchemy import create_engine, text
from transformers import (
TrainingArguments,
Trainer,
AutoModelForCausalLM,
AutoTokenizer,
DataCollatorForLanguageModeling
)
from datasets import Dataset
from peft import (
prepare_model_for_kbit_training,
LoraConfig,
get_peft_model
)
from datetime import datetime
# Constants - Modified for HF Spaces
MODEL_NAME = "deepseek-ai/DeepSeek-R1"
OUTPUT_DIR = "/tmp/finetuned_models" # Using /tmp for HF Spaces
LOGS_DIR = "/tmp/training_logs" # Using /tmp for HF Spaces
class TrainingInterface:
def __init__(self):
self.current_status = "Idle"
self.progress = 0
self.is_training = False
def get_database_url(self):
"""Get database URL from HF Space secrets"""
database_url = os.environ.get('DATABASE_URL')
if not database_url:
raise Exception("DATABASE_URL not found in environment variables")
return database_url
def fetch_training_data(self, progress=gr.Progress()):
"""Fetch training data from database"""
try:
database_url = self.get_database_url()
engine = create_engine(database_url)
progress(0, desc="Connecting to database...")
with engine.connect() as conn:
result = conn.execute(text("SELECT COUNT(*) FROM bents"))
total_rows = result.scalar()
query = text("SELECT chunk_id, text FROM bents")
df = pd.read_sql_query(query, conn)
progress(0.5, desc="Data fetched successfully")
return df
except Exception as e:
raise gr.Error(f"Database error: {str(e)}")
def prepare_training_data(self, df, progress=gr.Progress()):
"""Convert DataFrame into training format"""
formatted_data = []
try:
total_rows = len(df)
for idx, row in enumerate(df.iterrows()):
progress(idx/total_rows, desc="Preparing training data...")
_, row_data = row
chunk_id = str(row_data['chunk_id']).strip()
text = str(row_data['text']).strip()
if chunk_id and text:
formatted_text = f"User: {chunk_id}\nAssistant: {text}"
formatted_data.append({"text": formatted_text})
if not formatted_data:
raise ValueError("No valid training data found")
return formatted_data
except Exception as e:
raise gr.Error(f"Data preparation error: {str(e)}")
def stop_training(self):
"""Stop the training process"""
self.is_training = False
return "Training stopped by user."
def train_model(
self,
learning_rate=2e-4,
num_epochs=3,
batch_size=4,
progress=gr.Progress()
):
"""Main training function"""
try:
self.is_training = True
# Create directories in /tmp for HF Spaces
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
specific_output_dir = os.path.join(OUTPUT_DIR, f"run_{timestamp}")
os.makedirs(specific_output_dir, exist_ok=True)
os.makedirs(LOGS_DIR, exist_ok=True)
# Data preparation
progress(0.1, desc="Fetching data...")
if not self.is_training:
return "Training cancelled."
df = self.fetch_training_data()
formatted_data = self.prepare_training_data(df)
# Model initialization
progress(0.2, desc="Loading model...")
if not self.is_training:
return "Training cancelled."
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
trust_remote_code=True,
torch_dtype=torch.float16,
load_in_8bit=True,
device_map="auto" # Important for HF Spaces GPU allocation
)
# LoRA configuration
progress(0.3, desc="Setting up LoRA...")
if not self.is_training:
return "Training cancelled."
lora_config = LoraConfig(
r=16,
lora_alpha=32,
target_modules=[
"q_proj", "k_proj", "v_proj", "o_proj",
"gate_proj", "up_proj", "down_proj"
],
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM"
)
model = prepare_model_for_kbit_training(model)
model = get_peft_model(model, lora_config)
# Training setup
progress(0.4, desc="Configuring training...")
if not self.is_training:
return "Training cancelled."
training_args = TrainingArguments(
output_dir=specific_output_dir,
num_train_epochs=num_epochs,
per_device_train_batch_size=batch_size,
learning_rate=learning_rate,
fp16=True,
gradient_accumulation_steps=8,
gradient_checkpointing=True,
logging_dir=os.path.join(LOGS_DIR, f"run_{timestamp}"),
logging_steps=10,
save_strategy="epoch",
evaluation_strategy="epoch",
save_total_limit=2,
remove_unused_columns=False, # Important for HF Spaces
)
dataset = Dataset.from_dict({
'text': [item['text'] for item in formatted_data]
})
data_collator = DataCollatorForLanguageModeling(
tokenizer=tokenizer,
mlm=False
)
# Custom progress callback
class ProgressCallback(gr.Progress):
def __init__(self, progress_callback, training_interface):
self.progress_callback = progress_callback
self.training_interface = training_interface
def on_train_begin(self, args, state, control, **kwargs):
if not self.training_interface.is_training:
control.should_training_stop = True
self.progress_callback(0.5, desc="Training started...")
def on_epoch_begin(self, args, state, control, **kwargs):
if not self.training_interface.is_training:
control.should_training_stop = True
epoch_progress = (state.epoch / args.num_train_epochs)
total_progress = 0.5 + (epoch_progress * 0.4)
self.progress_callback(total_progress,
desc=f"Training epoch {state.epoch + 1}/{args.num_train_epochs}...")
trainer = Trainer(
model=model,
args=training_args,
train_dataset=dataset,
data_collator=data_collator,
callbacks=[ProgressCallback(progress, self)]
)
if not self.is_training:
return "Training cancelled."
trainer.train()
if not self.is_training:
return "Training cancelled."
# Save model
progress(0.9, desc="Saving model...")
trainer.save_model()
tokenizer.save_pretrained(specific_output_dir)
progress(1.0, desc="Training completed!")
return f"Training completed! Model saved in {specific_output_dir}"
except Exception as e:
self.is_training = False
raise gr.Error(f"Training error: {str(e)}")
def create_training_interface():
"""Create Gradio interface"""
interface = TrainingInterface()
with gr.Blocks(title="DeepSeek Model Training Interface") as app:
gr.Markdown("# DeepSeek Model Fine-tuning Interface")
with gr.Row():
with gr.Column():
learning_rate = gr.Slider(
minimum=1e-5,
maximum=1e-3,
value=2e-4,
label="Learning Rate"
)
num_epochs = gr.Slider(
minimum=1,
maximum=10,
value=3,
step=1,
label="Number of Epochs"
)
batch_size = gr.Slider(
minimum=1,
maximum=8,
value=4,
step=1,
label="Batch Size"
)
with gr.Row():
train_button = gr.Button("Start Training", variant="primary")
stop_button = gr.Button("Stop Training", variant="secondary")
output_text = gr.Textbox(
label="Training Status",
placeholder="Training status will appear here...",
lines=10
)
train_button.click(
fn=interface.train_model,
inputs=[learning_rate, num_epochs, batch_size],
outputs=output_text
)
stop_button.click(
fn=interface.stop_training,
inputs=[],
outputs=output_text
)
return app
if __name__ == "__main__":
os.makedirs(OUTPUT_DIR, exist_ok=True)
os.makedirs(LOGS_DIR, exist_ok=True)
app = create_training_interface()
app.launch() |