Spaces:
Runtime error
Runtime error
Delete firstkha.py
Browse files- firstkha.py +0 -231
firstkha.py
DELETED
@@ -1,231 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import re
|
3 |
-
import torch
|
4 |
-
from collections import Counter
|
5 |
-
from transformers import pipeline, AutoModel, AutoTokenizer, AutoModelForTokenClassification
|
6 |
-
import PyPDF2
|
7 |
-
import openai
|
8 |
-
import docx
|
9 |
-
|
10 |
-
|
11 |
-
# التحقق من توفر GPU واستخدامه
|
12 |
-
device = 0 if torch.cuda.is_available() else -1
|
13 |
-
|
14 |
-
# تحميل نماذج BERT، GPT2، ELECTRA، و AraBERT
|
15 |
-
arabic_bert_tokenizer = AutoTokenizer.from_pretrained("asafaya/bert-base-arabic")
|
16 |
-
arabic_bert_model = AutoModel.from_pretrained("asafaya/bert-base-arabic")
|
17 |
-
|
18 |
-
arabic_gpt2_tokenizer = AutoTokenizer.from_pretrained("aubmindlab/aragpt2-base")
|
19 |
-
arabic_gpt2_model = AutoModel.from_pretrained("aubmindlab/aragpt2-base")
|
20 |
-
|
21 |
-
arabic_electra_tokenizer = AutoTokenizer.from_pretrained("aubmindlab/araelectra-base-discriminator")
|
22 |
-
arabic_electra_model = AutoModel.from_pretrained("aubmindlab/araelectra-base-discriminator")
|
23 |
-
|
24 |
-
arabert_tokenizer = AutoTokenizer.from_pretrained("aubmindlab/bert-base-arabertv02")
|
25 |
-
arabert_model = AutoModel.from_pretrained("aubmindlab/bert-base-arabertv02")
|
26 |
-
|
27 |
-
# تحميل نموذج التعرف على الكيانات المسماة من CAMeL-Lab
|
28 |
-
ner_tokenizer = AutoTokenizer.from_pretrained("CAMeL-Lab/bert-base-arabic-camelbert-msa-ner")
|
29 |
-
ner_model = AutoModelForTokenClassification.from_pretrained("CAMeL-Lab/bert-base-arabic-camelbert-msa-ner")
|
30 |
-
nlp_ner = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer)
|
31 |
-
|
32 |
-
# دالة لتحليل النص باستخدام transformers
|
33 |
-
def camel_ner_analysis(text):
|
34 |
-
ner_results = nlp_ner(text)
|
35 |
-
entity_dict = {"PERSON": [], "LOC": [], "ORG": [], "DATE": []}
|
36 |
-
for entity in ner_results:
|
37 |
-
entity_type = entity["entity"]
|
38 |
-
if entity_type in entity_dict:
|
39 |
-
entity_dict[entity_type].append((entity["word"], entity_type))
|
40 |
-
return entity_dict
|
41 |
-
|
42 |
-
# دالة لتقسيم النص إلى أجزاء بناءً على عدد التوكنز
|
43 |
-
def split_text_into_chunks(text, tokenizer, max_length):
|
44 |
-
tokens = tokenizer.tokenize(text)
|
45 |
-
chunks = []
|
46 |
-
for i in range(0, len(tokens), max_length):
|
47 |
-
chunk_tokens = tokens[i:i + max_length]
|
48 |
-
chunk_text = tokenizer.convert_tokens_to_string(chunk_tokens)
|
49 |
-
chunks.append(chunk_text)
|
50 |
-
return chunks
|
51 |
-
|
52 |
-
# دالة لتجزئة النص إلى جمل باستخدام التعبيرات العادية
|
53 |
-
def extract_sentences(text):
|
54 |
-
sentences = re.split(r'(?<=[.!؟]) +', text)
|
55 |
-
return sentences
|
56 |
-
|
57 |
-
# دالة لاستخراج الاقتباسات من النص
|
58 |
-
def extract_quotes(text):
|
59 |
-
quotes = re.findall(r'[“"«](.*?)[”"»]', text)
|
60 |
-
return quotes
|
61 |
-
|
62 |
-
# دالة لعد الرموز في النص
|
63 |
-
def count_tokens(text, tokenizer):
|
64 |
-
tokens = tokenizer.tokenize(text)
|
65 |
-
return len(tokens)
|
66 |
-
|
67 |
-
# دالة لاستخراج النص من ملفات PDF
|
68 |
-
def extract_pdf_text(file_path):
|
69 |
-
with open(file_path, "rb") as pdf_file:
|
70 |
-
pdf_reader = PyPDF2.PdfReader(pdf_file)
|
71 |
-
text = ""
|
72 |
-
for page_num in range(len(pdf_reader.pages)):
|
73 |
-
page = pdf_reader.pages[page_num]
|
74 |
-
text += page.extract_text()
|
75 |
-
return text
|
76 |
-
|
77 |
-
# دالة لاستخراج النص من ملفات DOCX
|
78 |
-
def extract_docx_text(file_path):
|
79 |
-
doc = docx.Document(file_path)
|
80 |
-
text = "\n".join([para.text for para in doc.paragraphs])
|
81 |
-
return text
|
82 |
-
|
83 |
-
# دالة لقراءة النص من ملف مع التعامل مع مشاكل الترميز
|
84 |
-
def read_text_file(file_path):
|
85 |
-
try:
|
86 |
-
with open(file_path, "r", encoding="utf-8") as file:
|
87 |
-
return file.read()
|
88 |
-
except UnicodeDecodeError:
|
89 |
-
try:
|
90 |
-
with open(file_path, "r", encoding="latin-1") as file:
|
91 |
-
return file.read()
|
92 |
-
except UnicodeDecodeError:
|
93 |
-
with open(file_path, "r", encoding="cp1252") as file:
|
94 |
-
return file.read()
|
95 |
-
|
96 |
-
# دالة لاستخراج المشاهد من النص
|
97 |
-
def extract_scenes(text):
|
98 |
-
scenes = re.split(r'داخلي|خارجي', text)
|
99 |
-
scenes = [scene.strip() for scene in scenes if scene.strip()]
|
100 |
-
return scenes
|
101 |
-
|
102 |
-
# دالة لاستخراج تفاصيل المشهد (المكان والوقت)
|
103 |
-
def extract_scene_details(scene):
|
104 |
-
details = {}
|
105 |
-
location_match = re.search(r'(داخلي|خارجي)', scene)
|
106 |
-
time_match = re.search(r'(ليلاً|نهاراً|شروق|غروب)', scene)
|
107 |
-
|
108 |
-
if location_match:
|
109 |
-
details['location'] = location_match.group()
|
110 |
-
if time_match:
|
111 |
-
details['time'] = time_match.group()
|
112 |
-
|
113 |
-
return details
|
114 |
-
|
115 |
-
# دالة لاستخراج أعمار الشخصيات
|
116 |
-
def extract_ages(text):
|
117 |
-
ages = re.findall(r'\b(\d{1,2})\s*(?:عام|سنة|سنوات)\s*(?:من العمر|عمره|عمرها)', text)
|
118 |
-
return ages
|
119 |
-
|
120 |
-
# دالة لاستخراج وصف الشخصيات
|
121 |
-
def extract_character_descriptions(text):
|
122 |
-
descriptions = re.findall(r'شخصية\s*(.*?)\s*:\s*وصف\s*(.*?)\s*(?:\.|،)', text, re.DOTALL)
|
123 |
-
return descriptions
|
124 |
-
|
125 |
-
# دالة لاستخراج تكرار الشخصيات
|
126 |
-
def extract_character_frequency(entities):
|
127 |
-
persons = [ent[0] for ent in entities['PERSON']]
|
128 |
-
frequency = Counter(persons)
|
129 |
-
return frequency
|
130 |
-
|
131 |
-
# دالة لاستخراج الحوارات وتحديد المتحدثين
|
132 |
-
def extract_dialogues(text):
|
133 |
-
dialogues = re.findall(r'(.*?)(?:\s*:\s*)(.*?)(?=\n|$)', text, re.DOTALL)
|
134 |
-
return dialogues
|
135 |
-
|
136 |
-
# دالة لمعالجة الملفات وتقسيمها بناءً على عدد التوكنز
|
137 |
-
def process_files(input_directory, output_directory_500):
|
138 |
-
for file_name in os.listdir(input_directory):
|
139 |
-
file_path = os.path.join(input_directory, file_name)
|
140 |
-
|
141 |
-
if os.path.isdir(file_path): # التأكد من أن الملف ليس مجلدًا
|
142 |
-
continue
|
143 |
-
|
144 |
-
if file_path.endswith(".pdf"):
|
145 |
-
text = extract_pdf_text(file_path)
|
146 |
-
elif file_path.endswith(".docx"):
|
147 |
-
text = extract_docx_text(file_path)
|
148 |
-
else:
|
149 |
-
text = read_text_file(file_path)
|
150 |
-
|
151 |
-
# تقسيم النص إلى أجزاء لا تتجاوز 450 توكنز
|
152 |
-
chunks_450 = split_text_into_chunks(text, arabic_bert_tokenizer, 450)
|
153 |
-
for i, chunk in enumerate(chunks_450):
|
154 |
-
output_file_450 = os.path.join(output_directory_500, f"{os.path.splitext(file_name)[0]}_part_{i+1}.txt")
|
155 |
-
with open(output_file_450, "w", encoding="utf-8") as file:
|
156 |
-
file.write(chunk)
|
157 |
-
|
158 |
-
# دالة لتحليل النصوص واستخراج المعلومات وحفظ النتائج
|
159 |
-
def analyze_files(input_directory, output_directory, tokenizer, max_length):
|
160 |
-
for file_name in os.listdir(input_directory):
|
161 |
-
file_path = os.path.join(input_directory, file_name)
|
162 |
-
|
163 |
-
if os.path.isdir(file_path): # التأكد من أن الملف ليس مجلدًا
|
164 |
-
continue
|
165 |
-
|
166 |
-
with open(file_path, "r", encoding="utf-8") as file:
|
167 |
-
text = file.read()
|
168 |
-
|
169 |
-
chunks = split_text_into_chunks(text, tokenizer, max_length)
|
170 |
-
|
171 |
-
# إجراء التحليل على النصوص المقسمة
|
172 |
-
for chunk in chunks:
|
173 |
-
entities = camel_ner_analysis(chunk)
|
174 |
-
sentences = extract_sentences(chunk)
|
175 |
-
quotes = extract_quotes(chunk)
|
176 |
-
token_count = count_tokens(chunk, tokenizer)
|
177 |
-
scenes = extract_scenes(chunk)
|
178 |
-
ages = extract_ages(chunk)
|
179 |
-
character_descriptions = extract_character_descriptions(chunk)
|
180 |
-
character_frequency = extract_character_frequency(entities)
|
181 |
-
dialogues = extract_dialogues(chunk)
|
182 |
-
scene_details = [extract_scene_details(scene) for scene in scenes]
|
183 |
-
|
184 |
-
# حفظ النتائج
|
185 |
-
with open(os.path.join(output_directory, f"{file_name}_entities.txt"), "a", encoding="utf-8") as file:
|
186 |
-
file.write(str(entities))
|
187 |
-
|
188 |
-
with open(os.path.join(output_directory, f"{file_name}_sentences.txt"), "a", encoding="utf-8") as file:
|
189 |
-
file.write("\n".join(sentences))
|
190 |
-
|
191 |
-
with open(os.path.join(output_directory, f"{file_name}_quotes.txt"), "a", encoding="utf-8") as file:
|
192 |
-
file.write("\n".join(quotes))
|
193 |
-
|
194 |
-
with open(os.path.join(output_directory, f"{file_name}_token_count.txt"), "a", encoding="utf-8") as file:
|
195 |
-
file.write(str(token_count))
|
196 |
-
|
197 |
-
with open(os.path.join(output_directory, f"{file_name}_scenes.txt"), "a", encoding="utf-8") as file:
|
198 |
-
file.write("\n".join(scenes))
|
199 |
-
|
200 |
-
with open(os.path.join(output_directory, f"{file_name}_scene_details.txt"), "a", encoding="utf-8") as file:
|
201 |
-
file.write(str(scene_details))
|
202 |
-
|
203 |
-
with open(os.path.join(output_directory, f"{file_name}_ages.txt"), "a", encoding="utf-8") as file:
|
204 |
-
file.write(str(ages))
|
205 |
-
|
206 |
-
with open(os.path.join(output_directory, f"{file_name}_character_descriptions.txt"), "a", encoding="utf-8") as file:
|
207 |
-
file.write(str(character_descriptions))
|
208 |
-
|
209 |
-
with open(os.path.join(output_directory, f"{file_name}_character_frequency.txt"), "a", encoding="utf-8") as file:
|
210 |
-
file.write(str(character_frequency))
|
211 |
-
|
212 |
-
with open(os.path.join(output_directory, f"{file_name}_dialogues.txt"), "a", encoding="utf-8") as file:
|
213 |
-
file.write(str(dialogues))
|
214 |
-
|
215 |
-
# تحديد المسارات
|
216 |
-
input_directory = "/Volumes/CLOCKWORK T/clockworkspace/first pro/in"
|
217 |
-
output_directory_450 = "/Volumes/CLOCKWORK T/clockworkspace/first pro/500"
|
218 |
-
input_directory_450 = "/Volumes/CLOCKWORK T/clockworkspace/first pro/500"
|
219 |
-
output_directory_450_out = "/Volumes/CLOCKWORK T/clockworkspace/first pro/out/500"
|
220 |
-
|
221 |
-
# التأكد من وجود المسارات
|
222 |
-
os.makedirs(output_directory_450, exist_ok=True)
|
223 |
-
os.makedirs(output_directory_450_out, exist_ok=True)
|
224 |
-
|
225 |
-
# معالجة الملفات وتقسيمها
|
226 |
-
process_files(input_directory, output_directory_450)
|
227 |
-
|
228 |
-
# تحليل الملفات المقسمة إلى 450 توكنز
|
229 |
-
analyze_files(input_directory_450, output_directory_450_out, arabic_bert_tokenizer, 512)
|
230 |
-
|
231 |
-
print("تمت معالجة الملفات وتحليلها بنجاح.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|