mohamedrady commited on
Commit
0fa896d
·
verified ·
1 Parent(s): 35d0300

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +20 -194
app.py CHANGED
@@ -1,198 +1,24 @@
1
- import os
2
- import re
3
- from camel_tools.tokenizers.word import simple_word_tokenize
4
- from camel_tools.ner import NERecognizer
5
- import nltk
6
- import torch
7
- from collections import Counter
8
- from transformers import pipeline, AutoModel, AutoTokenizer
9
- import PyPDF2
10
  import gradio as gr
11
- import openai
12
-
13
- # تعيين التوكن الخاص بـ OpenAI
14
- openai.api_key = "sk-proj-62TDbO5KABSdkZaFPPD4T3BlbkFJkhqOYpHhL6OucTzNdWSU"
15
-
16
- # تحميل وتفعيل الأدوات المطلوبة
17
- nltk.download('punkt')
18
-
19
- # التحقق من توفر GPU واستخدامه
20
- device = 0 if torch.cuda.is_available() else -1
21
-
22
- # تحميل نماذج التحليل اللغوي
23
- analyzer = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english", device=device)
24
-
25
- # تحميل نماذج BERT، GPT2، ELECTRA، و AraBERT
26
- arabic_bert_tokenizer = AutoTokenizer.from_pretrained("asafaya/bert-base-arabic")
27
- arabic_bert_model = AutoModel.from_pretrained("asafaya/bert-base-arabic")
28
-
29
- arabic_gpt2_tokenizer = AutoTokenizer.from_pretrained("aubmindlab/aragpt2-base")
30
- arabic_gpt2_model = AutoModel.from_pretrained("aubmindlab/aragpt2-base")
31
-
32
- arabic_electra_tokenizer = AutoTokenizer.from_pretrained("aubmindlab/araelectra-base-discriminator")
33
- arabic_electra_model = AutoModel.from_pretrained("aubmindlab/araelectra-base-discriminator")
34
-
35
- arabert_tokenizer = AutoTokenizer.from_pretrained("aubmindlab/bert-base-arabertv02")
36
- arabert_model = AutoModel.from_pretrained("aubmindlab/bert-base-arabertv02")
37
-
38
- # دالة لتحليل النص باستخدام camel_tools
39
- def camel_ner_analysis(text):
40
- ner = NERecognizer.pretrained()
41
- tokens = simple_word_tokenize(text)
42
- entities = ner.predict(tokens)
43
- entity_dict = {"PERSON": [], "LOC": [], "ORG": [], "DATE": []}
44
- for token, tag in zip(tokens, entities):
45
- if tag in entity_dict:
46
- entity_dict[tag].append((token, tag))
47
- return entity_dict
48
-
49
- # دالة لتحليل المشاعر
50
- def analyze_sentiments(text):
51
- sentiments = analyzer(text)
52
- return sentiments
53
-
54
- # دالة لتجزئة النص إلى جمل
55
- def nltk_extract_sentences(text):
56
- sentences = nltk.tokenize.sent_tokenize(text, language='arabic')
57
- return sentences
58
-
59
- # دالة لاستخراج الاقتباسات من النص
60
- def nltk_extract_quotes(text):
61
- quotes = []
62
- sentences = nltk.tokenize.sent_tokenize(text, language='arabic')
63
- for sentence in sentences:
64
- if '"' in sentence or '«' in sentence or '»' in sentence:
65
- quotes.append(sentence)
66
- return quotes
67
-
68
- # دالة لعد الرموز في النص
69
- def count_tokens(text):
70
- tokens = simple_word_tokenize(text)
71
- return len(tokens)
72
-
73
- # دالة لاستخراج النص من ملفات PDF
74
- def extract_pdf_text(file_path):
75
- with open(file_path, "rb") as pdf_file:
76
- pdf_reader = PyPDF2.PdfReader(pdf_file)
77
- text = ""
78
- for page_num in range(len(pdf_reader.pages)):
79
- page = pdf_reader.pages[page_num]
80
- text += page.extract_text()
81
- return text
82
-
83
- # دالة لاستخراج المشاهد من النص
84
- def extract_scenes(text):
85
- scenes = re.split(r'داخلي|خارجي', text)
86
- scenes = [scene.strip() for scene in scenes if scene.strip()]
87
- return scenes
88
-
89
- # دالة لاستخراج تفاصيل المشهد (المكان والوقت)
90
- def extract_scene_details(scene):
91
- details = {}
92
- location_match = re.search(r'(داخلي|خارجي)', scene)
93
- time_match = re.search(r'(ليلاً|نهاراً|شروق|غروب)', scene)
94
-
95
- if location_match:
96
- details['location'] = location_match.group()
97
- if time_match:
98
- details['time'] = time_match.group()
99
-
100
- return details
101
-
102
- # دالة لاستخراج أعمار الشخصيات
103
- def extract_ages(text):
104
- ages = re.findall(r'\b(\d{1,2})\s*(?:عام|سنة|سنوات)\s*(?:من العمر|عمره|عمرها)', text)
105
- return ages
106
-
107
- # دالة لاستخراج وصف الشخصيات
108
- def extract_character_descriptions(text):
109
- descriptions = re.findall(r'شخصية\s*(.*?)\s*:\s*وصف\s*(.*?)\s*(?:\.|،)', text, re.DOTALL)
110
- return descriptions
111
-
112
- # دالة لاستخراج تكرار الشخصيات
113
- def extract_character_frequency(entities):
114
- persons = [ent[0] for ent in entities['PERSON']]
115
- frequency = Counter(persons)
116
- return frequency
117
-
118
- # دالة لاستخراج الحوارات وتحديد المتحدثين
119
- def extract_dialogues(text):
120
- dialogues = re.findall(r'(.*?)(?:\s*:\s*)(.*?)(?=\n|$)', text, re.DOTALL)
121
- return dialogues
122
-
123
- # دالة لتحليل النصوص واستخراج المعلومات وحفظ النتائج
124
- def analyze_and_complete(file_paths):
125
- results = []
126
- output_directory = os.getenv("SPACE_DIR", "/app/output")
127
-
128
- for file_path in file_paths:
129
- if file_path.endswith(".pdf"):
130
- text = extract_pdf_text(file_path)
131
- else:
132
- with open(file_path, "r", encoding="utf-8") as file:
133
- text = file.read()
134
-
135
- filename_prefix = os.path.splitext(os.path.basename(file_path))[0]
136
-
137
- camel_entities = camel_ner_analysis(text)
138
- sentiments = analyze_sentiments(text)
139
- sentences = nltk_extract_sentences(text)
140
- quotes = nltk_extract_quotes(text)
141
- token_count = count_tokens(text)
142
- scenes = extract_scenes(text)
143
- ages = extract_ages(text)
144
- character_descriptions = extract_character_descriptions(text)
145
- character_frequency = extract_character_frequency(camel_entities)
146
- dialogues = extract_dialogues(text)
147
-
148
- scene_details = [extract_scene_details(scene) for scene in scenes]
149
-
150
- # حفظ النتائج إلى ملفات
151
- with open(os.path.join(output_directory, f"{filename_prefix}_entities.txt"), "w", encoding="utf-8") as file:
152
- file.write(str(camel_entities))
153
-
154
- with open(os.path.join(output_directory, f"{filename_prefix}_sentiments.txt"), "w", encoding="utf-8") as file:
155
- file.write(str(sentiments))
156
-
157
- with open(os.path.join(output_directory, f"{filename_prefix}_sentences.txt"), "w", encoding="utf-8") as file:
158
- file.write("\n".join(sentences))
159
-
160
- with open(os.path.join(output_directory, f"{filename_prefix}_quotes.txt"), "w", encoding="utf-8") as file:
161
- file.write("\n".join(quotes))
162
-
163
- with open(os.path.join(output_directory, f"{filename_prefix}_token_count.txt"), "w", encoding="utf-8") as file:
164
- file.write(str(token_count))
165
-
166
- with open(os.path.join(output_directory, f"{filename_prefix}_scenes.txt"), "w", encoding="utf-8") as file:
167
- file.write("\n".join(scenes))
168
-
169
- with open(os.path.join(output_directory, f"{filename_prefix}_scene_details.txt"), "w", encoding="utf-8") as file:
170
- file.write(str(scene_details))
171
-
172
- with open(os.path.join(output_directory, f"{filename_prefix}_ages.txt"), "w", encoding="utf-8") as file:
173
- file.write(str(ages))
174
-
175
- with open(os.path.join(output_directory, f"{filename_prefix}_character_descriptions.txt"), "w", encoding="utf-8") as file:
176
- file.write(str(character_descriptions))
177
-
178
- with open(os.path.join(output_directory, f"{filename_prefix}_character_frequency.txt"), "w", encoding="utf-8") as file:
179
- file.write(str(character_frequency))
180
-
181
- with open(os.path.join(output_directory, f"{filename_prefix}_dialogues.txt"), "w", encoding="utf-8") as file:
182
- file.write(str(dialogues))
183
-
184
- results.append((str(camel_entities), str(sentiments), "\n".join(sentences), "\n".join(quotes), str(token_count), "\n".join(scenes), str(scene_details), str(ages), str(character_descriptions), str(character_frequency), str(dialogues)))
185
-
186
- return results
187
-
188
- ## تعريف واجهة Gradio
189
- interface = gr.Interface(
190
- fn=analyze_and_complete,
191
- inputs=gr.File(file_count="multiple", type="filepath"),
192
- outputs=gr.JSON(),
193
- title="Movie Script Analyzer and Completer",
194
- description="Upload text, PDF, or DOCX files to analyze and complete the movie script."
195
  )
196
 
197
  if __name__ == "__main__":
198
- interface.launch()
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ import subprocess
3
+
4
+ def run_scripts():
5
+ outputs = []
6
+ scripts = ["firstkha.py", "alf.py"]
7
+ for script in scripts:
8
+ try:
9
+ result = subprocess.run(["python", script], check=True, text=True, capture_output=True)
10
+ outputs.append(f"Output of {script}:\n{result.stdout}")
11
+ except subprocess.CalledProcessError as e:
12
+ outputs.append(f"Error running {script}:\n{e.stderr}")
13
+ return "\n\n".join(outputs)
14
+
15
+ iface = gr.Interface(
16
+ fn=run_scripts,
17
+ inputs=[],
18
+ outputs="text",
19
+ live=True,
20
+ description="Run the scripts firstkha.py and alf.py"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
  )
22
 
23
  if __name__ == "__main__":
24
+ iface.launch()