mohamedrady's picture
Update app.py
c28bde1 verified
import os
import re
import torch
from collections import Counter
from transformers import pipeline, AutoModel, AutoTokenizer, AutoModelForCausalLM, AutoModelForTokenClassification
import PyPDF2
import openai
import docx
from arabert.preprocess import ArabertPreprocessor
import gradio as gr
# التحقق من توفر GPU واستخدامه
device = 0 if torch.cuda.is_available() else -1
# تحميل نماذج BERT و GPT2
arabic_bert_tokenizer = AutoTokenizer.from_pretrained("asafaya/bert-base-arabic")
arabic_bert_model = AutoModel.from_pretrained("asafaya/bert-base-arabic")
arabert_tokenizer = AutoTokenizer.from_pretrained("aubmindlab/bert-base-arabertv02")
arabert_model = AutoModel.from_pretrained("aubmindlab/bert-base-arabertv02")
gpt2_tokenizer = AutoTokenizer.from_pretrained("aubmindlab/aragpt2-large", trust_remote_code=True)
gpt2_model = AutoModelForCausalLM.from_pretrained("aubmindlab/aragpt2-large", trust_remote_code=True)
# إعداد المعالج النصي لـ AraBERT
arabert_prep = ArabertPreprocessor("aubmindlab/bert-base-arabertv02")
# دالة لتقسيم النص إلى أجزاء بناءً على عدد التوكنز
def split_text_into_chunks(text, tokenizer, max_length):
tokens = tokenizer.tokenize(text)
chunks = []
for i in range(0, len(tokens), max_length):
chunk_tokens = tokens[i:i + max_length]
chunk_text = tokenizer.convert_tokens_to_string(chunk_tokens)
chunks.append(chunk_text)
return chunks
# دالة لتجزئة النص إلى جمل باستخدام التعبيرات العادية
def extract_sentences(text):
sentences = re.split(r'(?<=[.!؟]) +', text)
return sentences
# دالة لاستخراج الاقتباسات من النص
def extract_quotes(text):
quotes = re.findall(r'[“"«](.*?)[”"»]', text)
return quotes
# دالة لعد الرموز في النص
def count_tokens(text, tokenizer):
tokens = tokenizer.tokenize(text)
return len(tokens)
# دالة لاستخراج النص من ملفات PDF
def extract_pdf_text(file_path):
text = ""
with open(file_path, "rb") as pdf_file:
pdf_reader = PyPDF2.PdfReader(pdf_file)
for page_num in range(len(pdf_reader.pages)):
page = pdf_reader.pages[page_num]
text += page.extract_text() or ""
return text
# دالة لاستخراج النص من ملفات DOCX
def extract_docx_text(file_path):
doc = docx.Document(file_path)
text = "\n".join([para.text for para in doc.paragraphs])
return text
# دالة لقراءة النص من ملف مع التعامل مع مشاكل الترميز
def read_text_file(file_path):
try:
with open(file_path, "r", encoding="utf-8") as file:
return file.read()
except UnicodeDecodeError:
try:
with open(file_path, "r", encoding="latin-1") as file:
return file.read()
except UnicodeDecodeError:
with open(file_path, "r", encoding="cp1252") as file:
return file.read()
# دالة لاستخراج المشاهد من النص
def extract_scenes(text):
scenes = re.split(r'داخلي|خارجي|... داخلي ...|... خارجي ...', text)
scenes = [scene.strip() for scene in scenes if scene.strip()]
return scenes
# دالة لاستخراج تفاصيل المشهد (المكان والوقت)
def extract_scene_details(scene):
details = {}
location_match = re.search(r'(داخلي|خارجي|... داخلي ...|... خارجي ...)', scene)
time_match = re.search(r'(ليلاً|نهاراً|شروق|غروب|... ليل ...|... نهار ...)', scene)
if location_match:
details['location'] = location_match.group()
if time_match:
details['time'] = time_match.group()
return details
# دالة لاستخراج أعمار الشخصيات
def extract_ages(text):
ages = re.findall(r'\b(\d{1,2})\s*(?:عام|سنة|سنوات)\s*(?:من العمر|عمره|عمرها)', text)
return ages
# دالة لاستخراج وصف الشخصيات
def extract_character_descriptions(text):
descriptions = re.findall(r'شخصية\s*(.*?)\s*:\s*وصف\s*(.*?)\s*(?:\.|،)', text, re.DOTALL)
return descriptions
# دالة لاستخراج تكرار الشخصيات
def extract_character_frequency(entities):
persons = [ent[0] for ent in entities['PERSON']]
frequency = Counter(persons)
return frequency
# دالة لاستخراج الحوارات وتحديد المتحدثين
def extract_dialogues(text):
dialogues = re.findall(r'(.*?)(?:\s*:\s*)(.*?)(?=\n|$)', text, re.DOTALL)
return dialogues
# دالة لمعالجة الملفات وتقسيمها بناءً على عدد التوكنز
def process_files(input_files, output_directory_950):
for file_path in input_files:
if os.path.isdir(file_path): # التأكد من أن الملف ليس مجلدًا
continue
if file_path.endswith(".pdf"):
text = extract_pdf_text(file_path)
elif file_path.endswith(".docx"):
text = extract_docx_text(file_path)
else:
text = read_text_file(file_path)
# تقسيم النص إلى أجزاء لا تتجاوز 950 توكنز
chunks_950 = split_text_into_chunks(text, gpt2_tokenizer, 950)
for i, chunk in enumerate(chunks_950):
output_file_950 = os.path.join(output_directory_950, f"{os.path.splitext(os.path.basename(file_path))[0]}_part_{i+1}.txt")
with open(output_file_950, "w", encoding="utf-8") as file:
file.write(chunk)
# دالة لتحليل النصوص واستخراج المعلومات وحفظ النتائج
def analyze_files(input_files, output_directory, tokenizer, max_length):
results = []
for file_path in input_files:
if os.path.isdir(file_path): # التأكد من أن الملف ليس مجلدًا
continue
with open(file_path, "r", encoding="utf-8") as file:
text = file.read()
chunks = split_text_into_chunks(text, tokenizer, max_length)
# إجراء التحليل على النصوص المقسمة
for chunk in chunks:
sentences = extract_sentences(chunk)
quotes = extract_quotes(chunk)
token_count = count_tokens(chunk, tokenizer)
scenes = extract_scenes(chunk)
ages = extract_ages(chunk)
character_descriptions = extract_character_descriptions(chunk)
dialogues = extract_dialogues(chunk)
scene_details = [extract_scene_details(scene) for scene in scenes]
result = {
"sentences": sentences,
"quotes": quotes,
"token_count": token_count,
"scenes": scenes,
"scene_details": scene_details,
"ages": ages,
"character_descriptions": character_descriptions,
"dialogues": dialogues
}
results.append(result)
# حفظ النتائج
base_filename = os.path.basename(file_path)
with open(os.path.join(output_directory, f"{base_filename}_sentences.txt"), "a", encoding="utf-8") as file:
file.write("\n".join(sentences) + "\n")
with open(os.path.join(output_directory, f"{base_filename}_quotes.txt"), "a", encoding="utf-8") as file:
file.write("\n".join(quotes) + "\n")
with open(os.path.join(output_directory, f"{base_filename}_token_count.txt"), "a", encoding="utf-8") as file:
file.write(str(token_count) + "\n")
with open(os.path.join(output_directory, f"{base_filename}_scenes.txt"), "a", encoding="utf-8") as file:
file.write("\n".join(scenes) + "\n")
with open(os.path.join(output_directory, f"{base_filename}_scene_details.txt"), "a", encoding="utf-8") as file:
file.write(str(scene_details) + "\n")
with open(os.path.join(output_directory, f"{base_filename}_ages.txt"), "a", encoding="utf-8") as file:
file.write(str(ages) + "\n")
with open(os.path.join(output_directory, f"{base_filename}_character_descriptions.txt"), "a", encoding="utf-8") as file:
file.write(str(character_descriptions) + "\n")
with open(os.path.join(output_directory, f"{base_filename}_dialogues.txt"), "a", encoding="utf-8") as file:
file.write(str(dialogues) + "\n")
return results
# تحديد المسارات
output_directory_950 = "/Volumes/CLOCKWORK T/clockworkspace/first pro/1000"
output_directory_950_out = "/Volumes/CLOCKWORK T/clockworkspace/first pro/out/1000"
# التأكد من وجود المسارات
os.makedirs(output_directory_950, exist_ok=True)
os.makedirs(output_directory_950_out, exist_ok=True)
# تعريف واجهة Gradio
def analyze_and_complete(input_files):
# معالجة الملفات وتقسيمها
process_files(input_files, output_directory_950)
# تحليل الملفات المقسمة إلى 950 توكنز
results = analyze_files(input_files, output_directory_950_out, gpt2_tokenizer, 950)
return results
interface = gr.Interface(
fn=analyze_and_complete,
inputs=gr.File(file_count="multiple", type="filepath"),
outputs="json",
title="Movie Script Analyzer and Completer",
description="Upload text, PDF, or DOCX files to analyze and complete the movie script."
)
if __name__ == "__main__":
interface.launch(share=True)