mohamedrady's picture
Create app.py
4ec5ed1 verified
raw
history blame
3.49 kB
import os
import spacy
import nltk
import torch
from transformers import pipeline
import PyPDF2
import gradio as gr
# Initialize required tools
nlp = spacy.load("en_core_web_sm")
nltk.download('punkt')
# Check if GPU is available and use it
device = 0 if torch.cuda.is_available() else -1
analyzer = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english", device=device)
# Define functions for text analysis
def spacy_ner_analysis(text):
doc = nlp(text)
entities = [(ent.text, ent.label_) for ent in doc.ents]
return entities
def nltk_extract_sentences(text):
sentences = nltk.tokenize.sent_tokenize(text)
return sentences
def nltk_extract_quotes(text):
quotes = []
sentences = nltk.tokenize.sent_tokenize(text)
for sentence in sentences:
if '"' in sentence:
quotes.append(sentence)
return quotes
def count_tokens(text):
tokens = nltk.tokenize.word_tokenize(text)
return len(tokens)
def extract_pdf_text(file_path):
with open(file_path, "rb") as pdf_file:
pdf_reader = PyPDF2.PdfReader(pdf_file)
text = ""
for page_num in range(len(pdf_reader.pages)):
page = pdf_reader.pages[page_num]
text += page.extract_text()
return text
def analyze_text(text):
try:
result = analyzer(text)
return result
except Exception as e:
print(f"Error analyzing text: {str(e)}")
return ""
def process_text(text, output_directory, filename_prefix):
spacy_entities = spacy_ner_analysis(text)
sentences = nltk_extract_sentences(text)
quotes = nltk_extract_quotes(text)
token_count = count_tokens(text)
# Save results to files
with open(os.path.join(output_directory, f"{filename_prefix}_spacy_entities.txt"), "w", encoding="utf-8") as file:
file.write(str(spacy_entities))
with open(os.path.join(output_directory, f"{filename_prefix}_sentences.txt"), "w", encoding="utf-8") as file:
file.write("\n".join(sentences))
with open(os.path.join(output_directory, f"{filename_prefix}_quotes.txt"), "w", encoding="utf-8") as file:
file.write("\n".join(quotes))
with open(os.path.join(output_directory, f"{filename_prefix}_token_count.txt"), "w", encoding="utf-8") as file:
file.write(str(token_count))
def analyze_and_complete(file_path):
if file_path.endswith(".pdf"):
text = extract_pdf_text(file_path)
else:
with open(file_path, "r", encoding="utf-8") as file:
text = file.read()
output_directory = "/Users/Home/Library/Mobile Documents/com~apple~CloudDocs/osa/ุณูŠู†ุงุฑูŠูˆู‡ุงุช/ู„ูŠุงู„ูŠ ุงู”ู„ู ู„ูŠู„ุฉ"
filename_prefix = os.path.splitext(os.path.basename(file_path))[0]
process_text(text, output_directory, filename_prefix)
spacy_entities = spacy_ner_analysis(text)
sentences = nltk_extract_sentences(text)
quotes = nltk_extract_quotes(text)
token_count = count_tokens(text)
return str(spacy_entities), "\n".join(sentences), "\n".join(quotes), str(token_count)
# Define the Gradio interface
interface = gr.Interface(
fn=analyze_and_complete,
inputs=gr.File(file_count="single", type="filepath"),
outputs=["text", "text", "text", "text"],
title="Movie Script Analyzer and Completer",
description="Upload a text, PDF, or DOCX file to analyze and complete the movie script."
)
if __name__ == "__main__":
interface.launch()