File size: 10,128 Bytes
f9953aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import os
import re
import torch
from collections import Counter
from transformers import pipeline, AutoModel, AutoTokenizer, AutoModelForTokenClassification
import PyPDF2
import openai
import docx


# التحقق من توفر GPU واستخدامه
device = 0 if torch.cuda.is_available() else -1

# تحميل نماذج BERT، GPT2، ELECTRA، و AraBERT
arabic_bert_tokenizer = AutoTokenizer.from_pretrained("asafaya/bert-base-arabic")
arabic_bert_model = AutoModel.from_pretrained("asafaya/bert-base-arabic")

arabic_gpt2_tokenizer = AutoTokenizer.from_pretrained("aubmindlab/aragpt2-base")
arabic_gpt2_model = AutoModel.from_pretrained("aubmindlab/aragpt2-base")

arabic_electra_tokenizer = AutoTokenizer.from_pretrained("aubmindlab/araelectra-base-discriminator")
arabic_electra_model = AutoModel.from_pretrained("aubmindlab/araelectra-base-discriminator")

arabert_tokenizer = AutoTokenizer.from_pretrained("aubmindlab/bert-base-arabertv02")
arabert_model = AutoModel.from_pretrained("aubmindlab/bert-base-arabertv02")

# تحميل نموذج التعرف على الكيانات المسماة من CAMeL-Lab
ner_tokenizer = AutoTokenizer.from_pretrained("CAMeL-Lab/bert-base-arabic-camelbert-msa-ner")
ner_model = AutoModelForTokenClassification.from_pretrained("CAMeL-Lab/bert-base-arabic-camelbert-msa-ner")
nlp_ner = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer)

# دالة لتحليل النص باستخدام transformers
def camel_ner_analysis(text):
    ner_results = nlp_ner(text)
    entity_dict = {"PERSON": [], "LOC": [], "ORG": [], "DATE": []}
    for entity in ner_results:
        entity_type = entity["entity"]
        if entity_type in entity_dict:
            entity_dict[entity_type].append((entity["word"], entity_type))
    return entity_dict

# دالة لتقسيم النص إلى أجزاء بناءً على عدد التوكنز
def split_text_into_chunks(text, tokenizer, max_length):
    tokens = tokenizer.tokenize(text)
    chunks = []
    for i in range(0, len(tokens), max_length):
        chunk_tokens = tokens[i:i + max_length]
        chunk_text = tokenizer.convert_tokens_to_string(chunk_tokens)
        chunks.append(chunk_text)
    return chunks

# دالة لتجزئة النص إلى جمل باستخدام التعبيرات العادية
def extract_sentences(text):
    sentences = re.split(r'(?<=[.!؟]) +', text)
    return sentences

# دالة لاستخراج الاقتباسات من النص
def extract_quotes(text):
    quotes = re.findall(r'[“"«](.*?)[”"»]', text)
    return quotes

# دالة لعد الرموز في النص
def count_tokens(text, tokenizer):
    tokens = tokenizer.tokenize(text)
    return len(tokens)

# دالة لاستخراج النص من ملفات PDF
def extract_pdf_text(file_path):
    with open(file_path, "rb") as pdf_file:
        pdf_reader = PyPDF2.PdfReader(pdf_file)
        text = ""
        for page_num in range(len(pdf_reader.pages)):
            page = pdf_reader.pages[page_num]
            text += page.extract_text()
    return text

# دالة لاستخراج النص من ملفات DOCX
def extract_docx_text(file_path):
    doc = docx.Document(file_path)
    text = "\n".join([para.text for para in doc.paragraphs])
    return text

# دالة لقراءة النص من ملف مع التعامل مع مشاكل الترميز
def read_text_file(file_path):
    try:
        with open(file_path, "r", encoding="utf-8") as file:
            return file.read()
    except UnicodeDecodeError:
        try:
            with open(file_path, "r", encoding="latin-1") as file:
                return file.read()
        except UnicodeDecodeError:
            with open(file_path, "r", encoding="cp1252") as file:
                return file.read()

# دالة لاستخراج المشاهد من النص
def extract_scenes(text):
    scenes = re.split(r'داخلي|خارجي', text)
    scenes = [scene.strip() for scene in scenes if scene.strip()]
    return scenes

# دالة لاستخراج تفاصيل المشهد (المكان والوقت)
def extract_scene_details(scene):
    details = {}
    location_match = re.search(r'(داخلي|خارجي)', scene)
    time_match = re.search(r'(ليلاً|نهاراً|شروق|غروب)', scene)

    if location_match:
        details['location'] = location_match.group()
    if time_match:
        details['time'] = time_match.group()

    return details

# دالة لاستخراج أعمار الشخصيات
def extract_ages(text):
    ages = re.findall(r'\b(\d{1,2})\s*(?:عام|سنة|سنوات)\s*(?:من العمر|عمره|عمرها)', text)
    return ages

# دالة لاستخراج وصف الشخصيات
def extract_character_descriptions(text):
    descriptions = re.findall(r'شخصية\s*(.*?)\s*:\s*وصف\s*(.*?)\s*(?:\.|،)', text, re.DOTALL)
    return descriptions

# دالة لاستخراج تكرار الشخصيات
def extract_character_frequency(entities):
    persons = [ent[0] for ent in entities['PERSON']]
    frequency = Counter(persons)
    return frequency

# دالة لاستخراج الحوارات وتحديد المتحدثين
def extract_dialogues(text):
    dialogues = re.findall(r'(.*?)(?:\s*:\s*)(.*?)(?=\n|$)', text, re.DOTALL)
    return dialogues

# دالة لمعالجة الملفات وتقسيمها بناءً على عدد التوكنز
def process_files(input_directory, output_directory_500):
    for file_name in os.listdir(input_directory):
        file_path = os.path.join(input_directory, file_name)
        
        if os.path.isdir(file_path):  # التأكد من أن الملف ليس مجلدًا
            continue
        
        if file_path.endswith(".pdf"):
            text = extract_pdf_text(file_path)
        elif file_path.endswith(".docx"):
            text = extract_docx_text(file_path)
        else:
            text = read_text_file(file_path)
        
        # تقسيم النص إلى أجزاء لا تتجاوز 450 توكنز
        chunks_450 = split_text_into_chunks(text, arabic_bert_tokenizer, 450)
        for i, chunk in enumerate(chunks_450):
            output_file_450 = os.path.join(output_directory_500, f"{os.path.splitext(file_name)[0]}_part_{i+1}.txt")
            with open(output_file_450, "w", encoding="utf-8") as file:
                file.write(chunk)

# دالة لتحليل النصوص واستخراج المعلومات وحفظ النتائج
def analyze_files(input_directory, output_directory, tokenizer, max_length):
    for file_name in os.listdir(input_directory):
        file_path = os.path.join(input_directory, file_name)
        
        if os.path.isdir(file_path):  # التأكد من أن الملف ليس مجلدًا
            continue
        
        with open(file_path, "r", encoding="utf-8") as file:
            text = file.read()
        
        chunks = split_text_into_chunks(text, tokenizer, max_length)
        
        # إجراء التحليل على النصوص المقسمة
        for chunk in chunks:
            entities = camel_ner_analysis(chunk)
            sentences = extract_sentences(chunk)
            quotes = extract_quotes(chunk)
            token_count = count_tokens(chunk, tokenizer)
            scenes = extract_scenes(chunk)
            ages = extract_ages(chunk)
            character_descriptions = extract_character_descriptions(chunk)
            character_frequency = extract_character_frequency(entities)
            dialogues = extract_dialogues(chunk)
            scene_details = [extract_scene_details(scene) for scene in scenes]

            # حفظ النتائج
            with open(os.path.join(output_directory, f"{file_name}_entities.txt"), "a", encoding="utf-8") as file:
                file.write(str(entities))

            with open(os.path.join(output_directory, f"{file_name}_sentences.txt"), "a", encoding="utf-8") as file:
                file.write("\n".join(sentences))

            with open(os.path.join(output_directory, f"{file_name}_quotes.txt"), "a", encoding="utf-8") as file:
                file.write("\n".join(quotes))

            with open(os.path.join(output_directory, f"{file_name}_token_count.txt"), "a", encoding="utf-8") as file:
                file.write(str(token_count))

            with open(os.path.join(output_directory, f"{file_name}_scenes.txt"), "a", encoding="utf-8") as file:
                file.write("\n".join(scenes))

            with open(os.path.join(output_directory, f"{file_name}_scene_details.txt"), "a", encoding="utf-8") as file:
                file.write(str(scene_details))

            with open(os.path.join(output_directory, f"{file_name}_ages.txt"), "a", encoding="utf-8") as file:
                file.write(str(ages))

            with open(os.path.join(output_directory, f"{file_name}_character_descriptions.txt"), "a", encoding="utf-8") as file:
                file.write(str(character_descriptions))

            with open(os.path.join(output_directory, f"{file_name}_character_frequency.txt"), "a", encoding="utf-8") as file:
                file.write(str(character_frequency))

            with open(os.path.join(output_directory, f"{file_name}_dialogues.txt"), "a", encoding="utf-8") as file:
                file.write(str(dialogues))

# تحديد المسارات
input_directory = "/Volumes/CLOCKWORK T/clockworkspace/first pro/in"
output_directory_450 = "/Volumes/CLOCKWORK T/clockworkspace/first pro/500"
input_directory_450 = "/Volumes/CLOCKWORK T/clockworkspace/first pro/500"
output_directory_450_out = "/Volumes/CLOCKWORK T/clockworkspace/first pro/out/500"

# التأكد من وجود المسارات
os.makedirs(output_directory_450, exist_ok=True)
os.makedirs(output_directory_450_out, exist_ok=True)

# معالجة الملفات وتقسيمها
process_files(input_directory, output_directory_450)

# تحليل الملفات المقسمة إلى 450 توكنز
analyze_files(input_directory_450, output_directory_450_out, arabic_bert_tokenizer, 512)

print("تمت معالجة الملفات وتحليلها بنجاح.")