File size: 11,436 Bytes
703e263
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
from ..models.hunyuan_dit import HunyuanDiT
from ..models.hunyuan_dit_text_encoder import HunyuanDiTCLIPTextEncoder, HunyuanDiTT5TextEncoder
from ..models.sdxl_vae_encoder import SDXLVAEEncoder
from ..models.sdxl_vae_decoder import SDXLVAEDecoder
from ..models import ModelManager
from ..prompters import HunyuanDiTPrompter
from ..schedulers import EnhancedDDIMScheduler
from .base import BasePipeline
import torch
from tqdm import tqdm
import numpy as np



class ImageSizeManager:
    def __init__(self):
        pass


    def _to_tuple(self, x):
        if isinstance(x, int):
            return x, x
        else:
            return x


    def get_fill_resize_and_crop(self, src, tgt):
        th, tw = self._to_tuple(tgt)
        h, w = self._to_tuple(src)

        tr = th / tw        # base 分辨率
        r = h / w           # 目标分辨率

        # resize
        if r > tr:
            resize_height = th
            resize_width = int(round(th / h * w))
        else:
            resize_width = tw
            resize_height = int(round(tw / w * h))    # 根据base分辨率,将目标分辨率resize下来

        crop_top = int(round((th - resize_height) / 2.0))
        crop_left = int(round((tw - resize_width) / 2.0))

        return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width)


    def get_meshgrid(self, start, *args):
        if len(args) == 0:
            # start is grid_size
            num = self._to_tuple(start)
            start = (0, 0)
            stop = num
        elif len(args) == 1:
            # start is start, args[0] is stop, step is 1
            start = self._to_tuple(start)
            stop = self._to_tuple(args[0])
            num = (stop[0] - start[0], stop[1] - start[1])
        elif len(args) == 2:
            # start is start, args[0] is stop, args[1] is num
            start = self._to_tuple(start)       # 左上角   eg: 12,0
            stop = self._to_tuple(args[0])      # 右下角   eg: 20,32
            num = self._to_tuple(args[1])       # 目标大小  eg: 32,124
        else:
            raise ValueError(f"len(args) should be 0, 1 or 2, but got {len(args)}")

        grid_h = np.linspace(start[0], stop[0], num[0], endpoint=False, dtype=np.float32) # 12-20 中间差值32份   0-32 中间差值124份
        grid_w = np.linspace(start[1], stop[1], num[1], endpoint=False, dtype=np.float32)
        grid = np.meshgrid(grid_w, grid_h)  # here w goes first
        grid = np.stack(grid, axis=0)   # [2, W, H]
        return grid


    def get_2d_rotary_pos_embed(self, embed_dim, start, *args, use_real=True):
        grid = self.get_meshgrid(start, *args)   # [2, H, w]
        grid = grid.reshape([2, 1, *grid.shape[1:]])   # 返回一个采样矩阵  分辨率与目标分辨率一致
        pos_embed = self.get_2d_rotary_pos_embed_from_grid(embed_dim, grid, use_real=use_real)
        return pos_embed


    def get_2d_rotary_pos_embed_from_grid(self, embed_dim, grid, use_real=False):
        assert embed_dim % 4 == 0

        # use half of dimensions to encode grid_h
        emb_h = self.get_1d_rotary_pos_embed(embed_dim // 2, grid[0].reshape(-1), use_real=use_real)  # (H*W, D/4)
        emb_w = self.get_1d_rotary_pos_embed(embed_dim // 2, grid[1].reshape(-1), use_real=use_real)  # (H*W, D/4)

        if use_real:
            cos = torch.cat([emb_h[0], emb_w[0]], dim=1)    # (H*W, D/2)
            sin = torch.cat([emb_h[1], emb_w[1]], dim=1)    # (H*W, D/2)
            return cos, sin
        else:
            emb = torch.cat([emb_h, emb_w], dim=1)    # (H*W, D/2)
            return emb


    def get_1d_rotary_pos_embed(self, dim: int, pos, theta: float = 10000.0, use_real=False):
        if isinstance(pos, int):
            pos = np.arange(pos)
        freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))  # [D/2]
        t = torch.from_numpy(pos).to(freqs.device)  # type: ignore  # [S]
        freqs = torch.outer(t, freqs).float()  # type: ignore   # [S, D/2]
        if use_real:
            freqs_cos = freqs.cos().repeat_interleave(2, dim=1)  # [S, D]
            freqs_sin = freqs.sin().repeat_interleave(2, dim=1)  # [S, D]
            return freqs_cos, freqs_sin
        else:
            freqs_cis = torch.polar(torch.ones_like(freqs), freqs)  # complex64     # [S, D/2]
            return freqs_cis
        

    def calc_rope(self, height, width):
        patch_size = 2
        head_size = 88
        th = height // 8 // patch_size
        tw = width // 8 // patch_size
        base_size = 512 // 8 // patch_size
        start, stop = self.get_fill_resize_and_crop((th, tw), base_size)
        sub_args = [start, stop, (th, tw)]
        rope = self.get_2d_rotary_pos_embed(head_size, *sub_args)
        return rope



class HunyuanDiTImagePipeline(BasePipeline):

    def __init__(self, device="cuda", torch_dtype=torch.float16):
        super().__init__(device=device, torch_dtype=torch_dtype)
        self.scheduler = EnhancedDDIMScheduler(prediction_type="v_prediction", beta_start=0.00085, beta_end=0.03)
        self.prompter = HunyuanDiTPrompter()
        self.image_size_manager = ImageSizeManager()
        # models
        self.text_encoder: HunyuanDiTCLIPTextEncoder = None
        self.text_encoder_t5: HunyuanDiTT5TextEncoder = None
        self.dit: HunyuanDiT = None
        self.vae_decoder: SDXLVAEDecoder = None
        self.vae_encoder: SDXLVAEEncoder = None


    def denoising_model(self):
        return self.dit


    def fetch_models(self, model_manager: ModelManager, prompt_refiner_classes=[]):
        # Main models
        self.text_encoder = model_manager.fetch_model("hunyuan_dit_clip_text_encoder")
        self.text_encoder_t5 = model_manager.fetch_model("hunyuan_dit_t5_text_encoder")
        self.dit = model_manager.fetch_model("hunyuan_dit")
        self.vae_decoder = model_manager.fetch_model("sdxl_vae_decoder")
        self.vae_encoder = model_manager.fetch_model("sdxl_vae_encoder")
        self.prompter.fetch_models(self.text_encoder, self.text_encoder_t5)
        self.prompter.load_prompt_refiners(model_manager, prompt_refiner_classes)


    @staticmethod
    def from_model_manager(model_manager: ModelManager, prompt_refiner_classes=[]):
        pipe = HunyuanDiTImagePipeline(
            device=model_manager.device,
            torch_dtype=model_manager.torch_dtype,
        )
        pipe.fetch_models(model_manager, prompt_refiner_classes)
        return pipe
    

    def encode_image(self, image, tiled=False, tile_size=64, tile_stride=32):
        latents = self.vae_encoder(image, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)
        return latents
    

    def decode_image(self, latent, tiled=False, tile_size=64, tile_stride=32):
        image = self.vae_decoder(latent.to(self.device), tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)
        image = self.vae_output_to_image(image)
        return image
    

    def encode_prompt(self, prompt, clip_skip=1, clip_skip_2=1, positive=True):
        text_emb, text_emb_mask, text_emb_t5, text_emb_mask_t5 = self.prompter.encode_prompt(
            prompt,
            clip_skip=clip_skip,
            clip_skip_2=clip_skip_2,
            positive=positive,
            device=self.device
        )
        return {
            "text_emb": text_emb,
            "text_emb_mask": text_emb_mask,
            "text_emb_t5": text_emb_t5,
            "text_emb_mask_t5": text_emb_mask_t5
        }
    

    def prepare_extra_input(self, latents=None, tiled=False, tile_size=64, tile_stride=32):
        batch_size, height, width = latents.shape[0], latents.shape[2] * 8, latents.shape[3] * 8
        if tiled:
            height, width = tile_size * 16, tile_size * 16
        image_meta_size = torch.as_tensor([width, height, width, height, 0, 0]).to(device=self.device)
        freqs_cis_img = self.image_size_manager.calc_rope(height, width)
        image_meta_size = torch.stack([image_meta_size] * batch_size)
        return {
            "size_emb": image_meta_size,
            "freq_cis_img": (freqs_cis_img[0].to(dtype=self.torch_dtype, device=self.device), freqs_cis_img[1].to(dtype=self.torch_dtype, device=self.device)),
            "tiled": tiled,
            "tile_size": tile_size,
            "tile_stride": tile_stride
        }
    

    @torch.no_grad()
    def __call__(
        self,
        prompt,
        local_prompts=[],
        masks=[],
        mask_scales=[],
        negative_prompt="",
        cfg_scale=7.5,
        clip_skip=1,
        clip_skip_2=1,
        input_image=None,
        reference_strengths=[0.4],
        denoising_strength=1.0,
        height=1024,
        width=1024,
        num_inference_steps=20,
        tiled=False,
        tile_size=64,
        tile_stride=32,
        progress_bar_cmd=tqdm,
        progress_bar_st=None,
    ):
        # Prepare scheduler
        self.scheduler.set_timesteps(num_inference_steps, denoising_strength)

        # Prepare latent tensors
        noise = torch.randn((1, 4, height//8, width//8), device=self.device, dtype=self.torch_dtype)
        if input_image is not None:
            image = self.preprocess_image(input_image).to(device=self.device, dtype=torch.float32)
            latents = self.vae_encoder(image, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride).to(self.torch_dtype)
            latents = self.scheduler.add_noise(latents, noise, timestep=self.scheduler.timesteps[0])
        else:
            latents = noise.clone()

        # Encode prompts
        prompt_emb_posi = self.encode_prompt(prompt, clip_skip=clip_skip, clip_skip_2=clip_skip_2, positive=True)
        if cfg_scale != 1.0:
            prompt_emb_nega = self.encode_prompt(negative_prompt, clip_skip=clip_skip, clip_skip_2=clip_skip_2, positive=True)
        prompt_emb_locals = [self.encode_prompt(prompt_local, clip_skip=clip_skip, clip_skip_2=clip_skip_2, positive=True) for prompt_local in local_prompts]

        # Prepare positional id
        extra_input = self.prepare_extra_input(latents, tiled, tile_size)

        # Denoise
        for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)):
            timestep = torch.tensor([timestep]).to(dtype=self.torch_dtype, device=self.device)

            # Positive side
            inference_callback = lambda prompt_emb_posi: self.dit(latents, timestep=timestep, **prompt_emb_posi, **extra_input)
            noise_pred_posi = self.control_noise_via_local_prompts(prompt_emb_posi, prompt_emb_locals, masks, mask_scales, inference_callback)
            
            if cfg_scale != 1.0:
                # Negative side
                noise_pred_nega = self.dit(
                    latents, timestep=timestep, **prompt_emb_nega, **extra_input,
                )
                # Classifier-free guidance
                noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega)
            else:
                noise_pred = noise_pred_posi

            latents = self.scheduler.step(noise_pred, self.scheduler.timesteps[progress_id], latents)

            if progress_bar_st is not None:
                progress_bar_st.progress(progress_id / len(self.scheduler.timesteps))
        
        # Decode image
        image = self.decode_image(latents.to(torch.float32), tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)

        return image