import logging import os import sys from typing import Any, Mapping, Sequence, Union import gradio as gr import numpy as np import spaces import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image import folder_paths from nodes import NODE_CLASS_MAPPINGS # Load available models from HF hf_hub_download( repo_id="Phips/2xNomosUni_span_multijpg_ldl", filename="2xNomosUni_span_multijpg_ldl.safetensors", local_dir="models/upscale_models", ) hf_hub_download( repo_id="ezioruan/inswapper_128.onnx", filename="inswapper_128.onnx", local_dir="models/insightface", ) hf_hub_download( repo_id="ziixzz/codeformer-v0.1.0.pth", filename="codeformer-v0.1.0.pth", local_dir="models/facerestore_models", ) hf_hub_download( repo_id="gmk123/GFPGAN", filename="detection_Resnet50_Final.pth", local_dir="models/facedetection", ) hf_hub_download( repo_id="gmk123/GFPGAN", filename="parsing_parsenet.pth", local_dir="models/facedetection", ) hf_hub_download( repo_id="vladmandic/insightface-faceanalysis", filename="buffalo_l.zip", local_dir="models/insightface/models", ) hf_hub_download( repo_id="model2/advance_face_model", filename="advance_face_model.safetensors", local_dir="models/reactor/faces", ) # ReActor has its own special snowflake installation os.system("cd custom_nodes/ComfyUI-ReActor && python install.py") def import_custom_nodes() -> None: """Find all custom nodes in the custom_nodes folder and add those node objects to NODE_CLASS_MAPPINGS This function sets up a new asyncio event loop, initializes the PromptServer, creates a PromptQueue, and initializes the custom nodes. """ import asyncio import execution import server from nodes import init_extra_nodes # Creating a new event loop and setting it as the default loop loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) # Creating an instance of PromptServer with the loop server_instance = server.PromptServer(loop) execution.PromptQueue(server_instance) # Initializing custom nodes init_extra_nodes() # Preload nodes, models. import_custom_nodes() loadimage = NODE_CLASS_MAPPINGS["LoadImage"]() getimagesize = NODE_CLASS_MAPPINGS["GetImageSize+"]() upscalemodelloader = NODE_CLASS_MAPPINGS["UpscaleModelLoader"]() reactorloadfacemodel = NODE_CLASS_MAPPINGS["ReActorLoadFaceModel"]() FACE_MODEL = reactorloadfacemodel.load_model( face_model="advance_face_model.safetensors" ) imageresize = NODE_CLASS_MAPPINGS["ImageResize+"]() reactorfaceswap = NODE_CLASS_MAPPINGS["ReActorFaceSwap"]() imageupscalewithmodel = NODE_CLASS_MAPPINGS["ImageUpscaleWithModel"]() UPSCALE_MODEL = upscalemodelloader.load_model(model_name="2xNomosUni_span_multijpg_ldl.safetensors") def load_extra_path_config(yaml_path): with open(yaml_path, "r", encoding="utf-8") as stream: config = yaml.safe_load(stream) yaml_dir = os.path.dirname(os.path.abspath(yaml_path)) for c in config: conf = config[c] if conf is None: continue base_path = None if "base_path" in conf: base_path = conf.pop("base_path") base_path = os.path.expandvars(os.path.expanduser(base_path)) if not os.path.isabs(base_path): base_path = os.path.abspath(os.path.join(yaml_dir, base_path)) is_default = False if "is_default" in conf: is_default = conf.pop("is_default") for x in conf: for y in conf[x].split("\n"): if len(y) == 0: continue full_path = y if base_path: full_path = os.path.join(base_path, full_path) elif not os.path.isabs(full_path): full_path = os.path.abspath(os.path.join(yaml_dir, y)) normalized_path = os.path.normpath(full_path) logging.info( "Adding extra search path {} {}".format(x, normalized_path) ) folder_paths.add_model_folder_path(x, normalized_path, is_default) def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any: """Returns the value at the given index of a sequence or mapping. If the object is a sequence (like list or string), returns the value at the given index. If the object is a mapping (like a dictionary), returns the value at the index-th key. Some return a dictionary, in these cases, we look for the "results" key Args: obj (Union[Sequence, Mapping]): The object to retrieve the value from. index (int): The index of the value to retrieve. Returns: Any: The value at the given index. """ try: return obj[index] except KeyError: return obj["result"][index] def find_path(name: str, path: str = None) -> str: """ Recursively looks at parent folders starting from the given path until it finds the given name. Returns the path as a Path object if found, or None otherwise. """ # If no path is given, use the current working directory if path is None: path = os.getcwd() # Check if the current directory contains the name if name in os.listdir(path): path_name = os.path.join(path, name) print(f"{name} found: {path_name}") return path_name # Get the parent directory parent_directory = os.path.dirname(path) # If the parent directory is the same as the current directory, we've reached the root and stop the search if parent_directory == path: return None # Recursively call the function with the parent directory return find_path(name, parent_directory) def add_comfyui_directory_to_sys_path() -> None: """ Add 'ComfyUI' to the sys.path """ comfyui_path = find_path("ComfyUI") if comfyui_path is not None and os.path.isdir(comfyui_path): sys.path.append(comfyui_path) print(f"'{comfyui_path}' added to sys.path") def add_extra_model_paths() -> None: """ Parse the optional extra_model_paths.yaml file and add the parsed paths to the sys.path. """ extra_model_paths = find_path("extra_model_paths.yaml") if extra_model_paths is not None: load_extra_path_config(extra_model_paths) else: print("Could not find the extra_model_paths config file.") add_comfyui_directory_to_sys_path() add_extra_model_paths() @spaces.GPU(duration=60) def advance_blur(input_image): with torch.inference_mode(): image_file_name = os.path.splitext(os.path.basename(input_image))[0] loaded_input_image = loadimage.load_image( image=input_image, ) image_size = getimagesize.execute( image=get_value_at_index(loaded_input_image, 0), ) original_width = get_value_at_index(image_size, 0) original_height = get_value_at_index(image_size, 1) resized_input_image = imageresize.execute( width=2560, height=2560, interpolation="bicubic", method="keep proportion", condition="downscale if bigger", multiple_of=0, image=get_value_at_index(loaded_input_image, 0), ) swapped_image = reactorfaceswap.execute( enabled=True, swap_model="inswapper_128.onnx", facedetection="retinaface_resnet50", face_restore_model="codeformer-v0.1.0.pth", face_restore_visibility=1, codeformer_weight=1, detect_gender_input="no", detect_gender_source="no", input_faces_index="0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99", source_faces_index="0", console_log_level=2, input_image=get_value_at_index(resized_input_image, 0), face_model=get_value_at_index(FACE_MODEL, 0), ) upscaled_image = imageupscalewithmodel.upscale( upscale_model=get_value_at_index(UPSCALE_MODEL, 0), image=get_value_at_index(swapped_image, 0), ) final_image = imageresize.execute( width=original_width, height=original_height, interpolation="lanczos", method="keep proportion", condition="downscale if bigger", multiple_of=0, image=get_value_at_index(upscaled_image, 0), ) img = Image.fromarray( np.clip( (255.0 * get_value_at_index(final_image, 0)[0].cpu().numpy()), 0, 255 ).astype(np.uint8) ) outpath = f"advance-blurred-{os.urandom(16).hex()}.jpg" img.save(outpath, quality=80, dpi=(72, 72)) return outpath if __name__ == "__main__": # Updated, more flexible CSS css_code = "" with gr.Blocks(css=css_code, theme=gr.themes.Base()) as app: gr.Markdown("# 🥸 Advance Blur") with gr.Row(max_height=500): with gr.Column(scale=1, min_width=160): gr.Image( value="before.jpg", label="Before", show_label=True, interactive=False, ) with gr.Column(scale=1, min_width=160): gr.Image( value="after.jpg", label="After", show_label=True, interactive=False, ) with gr.Row(): gr.HTML("(🔍 zoom if necessary)") with gr.Accordion("More info", open=False): gr.Markdown( """ **Advance Blur** is an anonymization tool that leverages a sophisticated technique known as "Vance Blurring" to enhance privacy for your images. **Features:** - **Blur Faces**: Automatically detects and replaces faces with the image of the ideal American male. - **Enhance Privacy:** Removes sensitive information from images (GPS, EXIF, etc.) - **Safe and secure:** No data is stored long-term or shared with others. System is fully reset on a regular basis. **Disclaimer:** Advance Blur is intended for entertainment purposes only. Any resemblance to actual persons is entirely coincidental, karmic, and comedic (as a decent parody should). Advance Blur only seeks to perfect images using the depiction of the ideal American male. **Instructions:** 1. Upload your image. 2. Click the "Submit" button to apply "Vance Blurring" to your image. 3. Download the blurred image by long-clicking on it to Copy, or tap down-arrow to Save. 4. Share the image with your friends and family, feeling confident in your privacy! **Tips:** - For best results, use high-quality images at medium-ranges. - Works best when faces are front-facing and well-lit. - Always check the final image before sharing. """ ) with gr.Row(): with gr.Column(): input_image = gr.Image( type="filepath", label="Upload Your Image", elem_id="fixed-image-size", show_label=True, ) submit_btn = gr.Button("Submit", variant="primary") with gr.Column(): output_image = gr.Image( label="\"Vance Blurred\" Result", elem_id="fixed-image-size", show_label=True, ) # Trigger your blur function submit_btn.click(fn=advance_blur, inputs=[input_image], outputs=[output_image]) # Launch the app app.launch(share=True)