import sys import cv2 import numpy as np import torch from torchvision.transforms.functional import normalize try: import torch.cuda as cuda except: cuda = None import comfy.utils import folder_paths import comfy.model_management as model_management from scripts.reactor_logger import logger from r_basicsr.utils.registry import ARCH_REGISTRY from r_chainner import model_loading from reactor_utils import ( tensor2img, img2tensor, set_ort_session, prepare_cropped_face, normalize_cropped_face ) if cuda is not None: if cuda.is_available(): providers = ["CUDAExecutionProvider"] else: providers = ["CPUExecutionProvider"] else: providers = ["CPUExecutionProvider"] def get_restored_face(cropped_face, face_restore_model, face_restore_visibility, codeformer_weight, interpolation: str = "Bicubic"): if interpolation == "Bicubic": interpolate = cv2.INTER_CUBIC elif interpolation == "Bilinear": interpolate = cv2.INTER_LINEAR elif interpolation == "Nearest": interpolate = cv2.INTER_NEAREST elif interpolation == "Lanczos": interpolate = cv2.INTER_LANCZOS4 face_size = 512 if "1024" in face_restore_model.lower(): face_size = 1024 elif "2048" in face_restore_model.lower(): face_size = 2048 scale = face_size / cropped_face.shape[0] logger.status(f"Boosting the Face with {face_restore_model} | Face Size is set to {face_size} with Scale Factor = {scale} and '{interpolation}' interpolation") cropped_face = cv2.resize(cropped_face, (face_size, face_size), interpolation=interpolate) # For upscaling the base 128px face, I found bicubic interpolation to be the best compromise targeting antialiasing # and detail preservation. Nearest is predictably unusable, Linear produces too much aliasing, and Lanczos produces # too many hallucinations and artifacts/fringing. model_path = folder_paths.get_full_path("facerestore_models", face_restore_model) device = model_management.get_torch_device() cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True) normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True) cropped_face_t = cropped_face_t.unsqueeze(0).to(device) try: with torch.no_grad(): if ".onnx" in face_restore_model: # ONNX models ort_session = set_ort_session(model_path, providers=providers) ort_session_inputs = {} facerestore_model = ort_session for ort_session_input in ort_session.get_inputs(): if ort_session_input.name == "input": cropped_face_prep = prepare_cropped_face(cropped_face) ort_session_inputs[ort_session_input.name] = cropped_face_prep if ort_session_input.name == "weight": weight = np.array([1], dtype=np.double) ort_session_inputs[ort_session_input.name] = weight output = ort_session.run(None, ort_session_inputs)[0][0] restored_face = normalize_cropped_face(output) else: # PTH models if "codeformer" in face_restore_model.lower(): codeformer_net = ARCH_REGISTRY.get("CodeFormer")( dim_embd=512, codebook_size=1024, n_head=8, n_layers=9, connect_list=["32", "64", "128", "256"], ).to(device) checkpoint = torch.load(model_path)["params_ema"] codeformer_net.load_state_dict(checkpoint) facerestore_model = codeformer_net.eval() else: sd = comfy.utils.load_torch_file(model_path, safe_load=True) facerestore_model = model_loading.load_state_dict(sd).eval() facerestore_model.to(device) output = facerestore_model(cropped_face_t, w=codeformer_weight)[ 0] if "codeformer" in face_restore_model.lower() else facerestore_model(cropped_face_t)[0] restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1)) del output torch.cuda.empty_cache() except Exception as error: print(f"\tFailed inference: {error}", file=sys.stderr) restored_face = tensor2img(cropped_face_t, rgb2bgr=True, min_max=(-1, 1)) if face_restore_visibility < 1: restored_face = cropped_face * (1 - face_restore_visibility) + restored_face * face_restore_visibility restored_face = restored_face.astype("uint8") return restored_face, scale