model2's picture
Add reactor
6527198
raw
history blame
26 kB
import os
import shutil
from typing import List, Union
import cv2
import numpy as np
from PIL import Image
import insightface
from insightface.app.common import Face
# try:
# import torch.cuda as cuda
# except:
# cuda = None
import torch
import folder_paths
import comfy.model_management as model_management
from modules.shared import state
from scripts.reactor_logger import logger
from reactor_utils import (
move_path,
get_image_md5hash,
)
from scripts.r_faceboost import swapper, restorer
import warnings
np.warnings = warnings
np.warnings.filterwarnings('ignore')
# PROVIDERS
try:
if torch.cuda.is_available():
providers = ["CUDAExecutionProvider"]
elif torch.backends.mps.is_available():
providers = ["CoreMLExecutionProvider"]
elif hasattr(torch,'dml') or hasattr(torch,'privateuseone'):
providers = ["ROCMExecutionProvider"]
else:
providers = ["CPUExecutionProvider"]
except Exception as e:
logger.debug(f"ExecutionProviderError: {e}.\nEP is set to CPU.")
providers = ["CPUExecutionProvider"]
# if cuda is not None:
# if cuda.is_available():
# providers = ["CUDAExecutionProvider"]
# else:
# providers = ["CPUExecutionProvider"]
# else:
# providers = ["CPUExecutionProvider"]
models_path_old = os.path.join(os.path.dirname(os.path.dirname(__file__)), "models")
insightface_path_old = os.path.join(models_path_old, "insightface")
insightface_models_path_old = os.path.join(insightface_path_old, "models")
models_path = folder_paths.models_dir
insightface_path = os.path.join(models_path, "insightface")
insightface_models_path = os.path.join(insightface_path, "models")
reswapper_path = os.path.join(models_path, "reswapper")
if os.path.exists(models_path_old):
move_path(insightface_models_path_old, insightface_models_path)
move_path(insightface_path_old, insightface_path)
move_path(models_path_old, models_path)
if os.path.exists(insightface_path) and os.path.exists(insightface_path_old):
shutil.rmtree(insightface_path_old)
shutil.rmtree(models_path_old)
FS_MODEL = None
CURRENT_FS_MODEL_PATH = None
ANALYSIS_MODELS = {
"640": None,
"320": None,
}
SOURCE_FACES = None
SOURCE_IMAGE_HASH = None
TARGET_FACES = None
TARGET_IMAGE_HASH = None
TARGET_FACES_LIST = []
TARGET_IMAGE_LIST_HASH = []
def unload_model(model):
if model is not None:
# check if model has unload method
# if "unload" in model:
# model.unload()
# if "model_unload" in model:
# model.model_unload()
del model
return None
def unload_all_models():
global FS_MODEL, CURRENT_FS_MODEL_PATH
FS_MODEL = unload_model(FS_MODEL)
ANALYSIS_MODELS["320"] = unload_model(ANALYSIS_MODELS["320"])
ANALYSIS_MODELS["640"] = unload_model(ANALYSIS_MODELS["640"])
def get_current_faces_model():
global SOURCE_FACES
return SOURCE_FACES
def getAnalysisModel(det_size = (640, 640)):
global ANALYSIS_MODELS
ANALYSIS_MODEL = ANALYSIS_MODELS[str(det_size[0])]
if ANALYSIS_MODEL is None:
ANALYSIS_MODEL = insightface.app.FaceAnalysis(
name="buffalo_l", providers=providers, root=insightface_path
)
ANALYSIS_MODEL.prepare(ctx_id=0, det_size=det_size)
ANALYSIS_MODELS[str(det_size[0])] = ANALYSIS_MODEL
return ANALYSIS_MODEL
def getFaceSwapModel(model_path: str):
global FS_MODEL, CURRENT_FS_MODEL_PATH
if FS_MODEL is None or CURRENT_FS_MODEL_PATH is None or CURRENT_FS_MODEL_PATH != model_path:
CURRENT_FS_MODEL_PATH = model_path
FS_MODEL = unload_model(FS_MODEL)
FS_MODEL = insightface.model_zoo.get_model(model_path, providers=providers)
return FS_MODEL
def sort_by_order(face, order: str):
if order == "left-right":
return sorted(face, key=lambda x: x.bbox[0])
if order == "right-left":
return sorted(face, key=lambda x: x.bbox[0], reverse = True)
if order == "top-bottom":
return sorted(face, key=lambda x: x.bbox[1])
if order == "bottom-top":
return sorted(face, key=lambda x: x.bbox[1], reverse = True)
if order == "small-large":
return sorted(face, key=lambda x: (x.bbox[2] - x.bbox[0]) * (x.bbox[3] - x.bbox[1]))
# if order == "large-small":
# return sorted(face, key=lambda x: (x.bbox[2] - x.bbox[0]) * (x.bbox[3] - x.bbox[1]), reverse = True)
# by default "large-small":
return sorted(face, key=lambda x: (x.bbox[2] - x.bbox[0]) * (x.bbox[3] - x.bbox[1]), reverse = True)
def get_face_gender(
face,
face_index,
gender_condition,
operated: str,
order: str,
):
gender = [
x.sex
for x in face
]
gender.reverse()
# If index is outside of bounds, return None, avoid exception
if face_index >= len(gender):
logger.status("Requested face index (%s) is out of bounds (max available index is %s)", face_index, len(gender))
return None, 0
face_gender = gender[face_index]
logger.status("%s Face %s: Detected Gender -%s-", operated, face_index, face_gender)
if (gender_condition == 1 and face_gender == "F") or (gender_condition == 2 and face_gender == "M"):
logger.status("OK - Detected Gender matches Condition")
try:
faces_sorted = sort_by_order(face, order)
return faces_sorted[face_index], 0
# return sorted(face, key=lambda x: x.bbox[0])[face_index], 0
except IndexError:
return None, 0
else:
logger.status("WRONG - Detected Gender doesn't match Condition")
faces_sorted = sort_by_order(face, order)
return faces_sorted[face_index], 1
# return sorted(face, key=lambda x: x.bbox[0])[face_index], 1
def half_det_size(det_size):
logger.status("Trying to halve 'det_size' parameter")
return (det_size[0] // 2, det_size[1] // 2)
def analyze_faces(img_data: np.ndarray, det_size=(640, 640)):
face_analyser = getAnalysisModel(det_size)
faces = face_analyser.get(img_data)
# Try halving det_size if no faces are found
if len(faces) == 0 and det_size[0] > 320 and det_size[1] > 320:
det_size_half = half_det_size(det_size)
return analyze_faces(img_data, det_size_half)
return faces
def get_face_single(img_data: np.ndarray, face, face_index=0, det_size=(640, 640), gender_source=0, gender_target=0, order="large-small"):
buffalo_path = os.path.join(insightface_models_path, "buffalo_l.zip")
if os.path.exists(buffalo_path):
os.remove(buffalo_path)
if gender_source != 0:
if len(face) == 0 and det_size[0] > 320 and det_size[1] > 320:
det_size_half = half_det_size(det_size)
return get_face_single(img_data, analyze_faces(img_data, det_size_half), face_index, det_size_half, gender_source, gender_target, order)
return get_face_gender(face,face_index,gender_source,"Source", order)
if gender_target != 0:
if len(face) == 0 and det_size[0] > 320 and det_size[1] > 320:
det_size_half = half_det_size(det_size)
return get_face_single(img_data, analyze_faces(img_data, det_size_half), face_index, det_size_half, gender_source, gender_target, order)
return get_face_gender(face,face_index,gender_target,"Target", order)
if len(face) == 0 and det_size[0] > 320 and det_size[1] > 320:
det_size_half = half_det_size(det_size)
return get_face_single(img_data, analyze_faces(img_data, det_size_half), face_index, det_size_half, gender_source, gender_target, order)
try:
faces_sorted = sort_by_order(face, order)
return faces_sorted[face_index], 0
# return sorted(face, key=lambda x: x.bbox[0])[face_index], 0
except IndexError:
return None, 0
def swap_face(
source_img: Union[Image.Image, None],
target_img: Image.Image,
model: Union[str, None] = None,
source_faces_index: List[int] = [0],
faces_index: List[int] = [0],
gender_source: int = 0,
gender_target: int = 0,
face_model: Union[Face, None] = None,
faces_order: List = ["large-small", "large-small"],
face_boost_enabled: bool = False,
face_restore_model = None,
face_restore_visibility: int = 1,
codeformer_weight: float = 0.5,
interpolation: str = "Bicubic",
):
global SOURCE_FACES, SOURCE_IMAGE_HASH, TARGET_FACES, TARGET_IMAGE_HASH
result_image = target_img
if model is not None:
if isinstance(source_img, str): # source_img is a base64 string
import base64, io
if 'base64,' in source_img: # check if the base64 string has a data URL scheme
# split the base64 string to get the actual base64 encoded image data
base64_data = source_img.split('base64,')[-1]
# decode base64 string to bytes
img_bytes = base64.b64decode(base64_data)
else:
# if no data URL scheme, just decode
img_bytes = base64.b64decode(source_img)
source_img = Image.open(io.BytesIO(img_bytes))
target_img = cv2.cvtColor(np.array(target_img), cv2.COLOR_RGB2BGR)
if source_img is not None:
source_img = cv2.cvtColor(np.array(source_img), cv2.COLOR_RGB2BGR)
source_image_md5hash = get_image_md5hash(source_img)
if SOURCE_IMAGE_HASH is None:
SOURCE_IMAGE_HASH = source_image_md5hash
source_image_same = False
else:
source_image_same = True if SOURCE_IMAGE_HASH == source_image_md5hash else False
if not source_image_same:
SOURCE_IMAGE_HASH = source_image_md5hash
logger.info("Source Image MD5 Hash = %s", SOURCE_IMAGE_HASH)
logger.info("Source Image the Same? %s", source_image_same)
if SOURCE_FACES is None or not source_image_same:
logger.status("Analyzing Source Image...")
source_faces = analyze_faces(source_img)
SOURCE_FACES = source_faces
elif source_image_same:
logger.status("Using Hashed Source Face(s) Model...")
source_faces = SOURCE_FACES
elif face_model is not None:
source_faces_index = [0]
logger.status("Using Loaded Source Face Model...")
source_face_model = [face_model]
source_faces = source_face_model
else:
logger.error("Cannot detect any Source")
if source_faces is not None:
target_image_md5hash = get_image_md5hash(target_img)
if TARGET_IMAGE_HASH is None:
TARGET_IMAGE_HASH = target_image_md5hash
target_image_same = False
else:
target_image_same = True if TARGET_IMAGE_HASH == target_image_md5hash else False
if not target_image_same:
TARGET_IMAGE_HASH = target_image_md5hash
logger.info("Target Image MD5 Hash = %s", TARGET_IMAGE_HASH)
logger.info("Target Image the Same? %s", target_image_same)
if TARGET_FACES is None or not target_image_same:
logger.status("Analyzing Target Image...")
target_faces = analyze_faces(target_img)
TARGET_FACES = target_faces
elif target_image_same:
logger.status("Using Hashed Target Face(s) Model...")
target_faces = TARGET_FACES
# No use in trying to swap faces if no faces are found, enhancement
if len(target_faces) == 0:
logger.status("Cannot detect any Target, skipping swapping...")
return result_image
if source_img is not None:
# separated management of wrong_gender between source and target, enhancement
source_face, src_wrong_gender = get_face_single(source_img, source_faces, face_index=source_faces_index[0], gender_source=gender_source, order=faces_order[1])
else:
# source_face = sorted(source_faces, key=lambda x: x.bbox[0])[source_faces_index[0]]
source_face = sorted(source_faces, key=lambda x: (x.bbox[2] - x.bbox[0]) * (x.bbox[3] - x.bbox[1]), reverse = True)[source_faces_index[0]]
src_wrong_gender = 0
if len(source_faces_index) != 0 and len(source_faces_index) != 1 and len(source_faces_index) != len(faces_index):
logger.status(f'Source Faces must have no entries (default=0), one entry, or same number of entries as target faces.')
elif source_face is not None:
result = target_img
if "inswapper" in model:
model_path = os.path.join(insightface_path, model)
elif "reswapper" in model:
model_path = os.path.join(reswapper_path, model)
face_swapper = getFaceSwapModel(model_path)
source_face_idx = 0
for face_num in faces_index:
# No use in trying to swap faces if no further faces are found, enhancement
if face_num >= len(target_faces):
logger.status("Checked all existing target faces, skipping swapping...")
break
if len(source_faces_index) > 1 and source_face_idx > 0:
source_face, src_wrong_gender = get_face_single(source_img, source_faces, face_index=source_faces_index[source_face_idx], gender_source=gender_source, order=faces_order[1])
source_face_idx += 1
if source_face is not None and src_wrong_gender == 0:
target_face, wrong_gender = get_face_single(target_img, target_faces, face_index=face_num, gender_target=gender_target, order=faces_order[0])
if target_face is not None and wrong_gender == 0:
logger.status(f"Swapping...")
if face_boost_enabled:
logger.status(f"Face Boost is enabled")
bgr_fake, M = face_swapper.get(result, target_face, source_face, paste_back=False)
bgr_fake, scale = restorer.get_restored_face(bgr_fake, face_restore_model, face_restore_visibility, codeformer_weight, interpolation)
M *= scale
result = swapper.in_swap(target_img, bgr_fake, M)
else:
# logger.status(f"Swapping as-is")
result = face_swapper.get(result, target_face, source_face)
elif wrong_gender == 1:
wrong_gender = 0
# Keep searching for other faces if wrong gender is detected, enhancement
#if source_face_idx == len(source_faces_index):
# result_image = Image.fromarray(cv2.cvtColor(result, cv2.COLOR_BGR2RGB))
# return result_image
logger.status("Wrong target gender detected")
continue
else:
logger.status(f"No target face found for {face_num}")
elif src_wrong_gender == 1:
src_wrong_gender = 0
# Keep searching for other faces if wrong gender is detected, enhancement
#if source_face_idx == len(source_faces_index):
# result_image = Image.fromarray(cv2.cvtColor(result, cv2.COLOR_BGR2RGB))
# return result_image
logger.status("Wrong source gender detected")
continue
else:
logger.status(f"No source face found for face number {source_face_idx}.")
result_image = Image.fromarray(cv2.cvtColor(result, cv2.COLOR_BGR2RGB))
else:
logger.status("No source face(s) in the provided Index")
else:
logger.status("No source face(s) found")
return result_image
def swap_face_many(
source_img: Union[Image.Image, None],
target_imgs: List[Image.Image],
model: Union[str, None] = None,
source_faces_index: List[int] = [0],
faces_index: List[int] = [0],
gender_source: int = 0,
gender_target: int = 0,
face_model: Union[Face, None] = None,
faces_order: List = ["large-small", "large-small"],
face_boost_enabled: bool = False,
face_restore_model = None,
face_restore_visibility: int = 1,
codeformer_weight: float = 0.5,
interpolation: str = "Bicubic",
):
global SOURCE_FACES, SOURCE_IMAGE_HASH, TARGET_FACES, TARGET_IMAGE_HASH, TARGET_FACES_LIST, TARGET_IMAGE_LIST_HASH
result_images = target_imgs
if model is not None:
if isinstance(source_img, str): # source_img is a base64 string
import base64, io
if 'base64,' in source_img: # check if the base64 string has a data URL scheme
# split the base64 string to get the actual base64 encoded image data
base64_data = source_img.split('base64,')[-1]
# decode base64 string to bytes
img_bytes = base64.b64decode(base64_data)
else:
# if no data URL scheme, just decode
img_bytes = base64.b64decode(source_img)
source_img = Image.open(io.BytesIO(img_bytes))
target_imgs = [cv2.cvtColor(np.array(target_img), cv2.COLOR_RGB2BGR) for target_img in target_imgs]
if source_img is not None:
source_img = cv2.cvtColor(np.array(source_img), cv2.COLOR_RGB2BGR)
source_image_md5hash = get_image_md5hash(source_img)
if SOURCE_IMAGE_HASH is None:
SOURCE_IMAGE_HASH = source_image_md5hash
source_image_same = False
else:
source_image_same = True if SOURCE_IMAGE_HASH == source_image_md5hash else False
if not source_image_same:
SOURCE_IMAGE_HASH = source_image_md5hash
logger.info("Source Image MD5 Hash = %s", SOURCE_IMAGE_HASH)
logger.info("Source Image the Same? %s", source_image_same)
if SOURCE_FACES is None or not source_image_same:
logger.status("Analyzing Source Image...")
source_faces = analyze_faces(source_img)
SOURCE_FACES = source_faces
elif source_image_same:
logger.status("Using Hashed Source Face(s) Model...")
source_faces = SOURCE_FACES
elif face_model is not None:
source_faces_index = [0]
logger.status("Using Loaded Source Face Model...")
source_face_model = [face_model]
source_faces = source_face_model
else:
logger.error("Cannot detect any Source")
if source_faces is not None:
target_faces = []
for i, target_img in enumerate(target_imgs):
if state.interrupted or model_management.processing_interrupted():
logger.status("Interrupted by User")
break
target_image_md5hash = get_image_md5hash(target_img)
if len(TARGET_IMAGE_LIST_HASH) == 0:
TARGET_IMAGE_LIST_HASH = [target_image_md5hash]
target_image_same = False
elif len(TARGET_IMAGE_LIST_HASH) == i:
TARGET_IMAGE_LIST_HASH.append(target_image_md5hash)
target_image_same = False
else:
target_image_same = True if TARGET_IMAGE_LIST_HASH[i] == target_image_md5hash else False
if not target_image_same:
TARGET_IMAGE_LIST_HASH[i] = target_image_md5hash
logger.info("(Image %s) Target Image MD5 Hash = %s", i, TARGET_IMAGE_LIST_HASH[i])
logger.info("(Image %s) Target Image the Same? %s", i, target_image_same)
if len(TARGET_FACES_LIST) == 0:
logger.status(f"Analyzing Target Image {i}...")
target_face = analyze_faces(target_img)
TARGET_FACES_LIST = [target_face]
elif len(TARGET_FACES_LIST) == i and not target_image_same:
logger.status(f"Analyzing Target Image {i}...")
target_face = analyze_faces(target_img)
TARGET_FACES_LIST.append(target_face)
elif len(TARGET_FACES_LIST) != i and not target_image_same:
logger.status(f"Analyzing Target Image {i}...")
target_face = analyze_faces(target_img)
TARGET_FACES_LIST[i] = target_face
elif target_image_same:
logger.status("(Image %s) Using Hashed Target Face(s) Model...", i)
target_face = TARGET_FACES_LIST[i]
# logger.status(f"Analyzing Target Image {i}...")
# target_face = analyze_faces(target_img)
if target_face is not None:
target_faces.append(target_face)
# No use in trying to swap faces if no faces are found, enhancement
if len(target_faces) == 0:
logger.status("Cannot detect any Target, skipping swapping...")
return result_images
if source_img is not None:
# separated management of wrong_gender between source and target, enhancement
source_face, src_wrong_gender = get_face_single(source_img, source_faces, face_index=source_faces_index[0], gender_source=gender_source, order=faces_order[1])
else:
# source_face = sorted(source_faces, key=lambda x: x.bbox[0])[source_faces_index[0]]
source_face = sorted(source_faces, key=lambda x: (x.bbox[2] - x.bbox[0]) * (x.bbox[3] - x.bbox[1]), reverse = True)[source_faces_index[0]]
src_wrong_gender = 0
if len(source_faces_index) != 0 and len(source_faces_index) != 1 and len(source_faces_index) != len(faces_index):
logger.status(f'Source Faces must have no entries (default=0), one entry, or same number of entries as target faces.')
elif source_face is not None:
results = target_imgs
model_path = model_path = os.path.join(insightface_path, model)
face_swapper = getFaceSwapModel(model_path)
source_face_idx = 0
for face_num in faces_index:
# No use in trying to swap faces if no further faces are found, enhancement
if face_num >= len(target_faces):
logger.status("Checked all existing target faces, skipping swapping...")
break
if len(source_faces_index) > 1 and source_face_idx > 0:
source_face, src_wrong_gender = get_face_single(source_img, source_faces, face_index=source_faces_index[source_face_idx], gender_source=gender_source, order=faces_order[1])
source_face_idx += 1
if source_face is not None and src_wrong_gender == 0:
# Reading results to make current face swap on a previous face result
for i, (target_img, target_face) in enumerate(zip(results, target_faces)):
target_face_single, wrong_gender = get_face_single(target_img, target_face, face_index=face_num, gender_target=gender_target, order=faces_order[0])
if target_face_single is not None and wrong_gender == 0:
result = target_img
logger.status(f"Swapping {i}...")
if face_boost_enabled:
logger.status(f"Face Boost is enabled")
bgr_fake, M = face_swapper.get(target_img, target_face_single, source_face, paste_back=False)
bgr_fake, scale = restorer.get_restored_face(bgr_fake, face_restore_model, face_restore_visibility, codeformer_weight, interpolation)
M *= scale
result = swapper.in_swap(target_img, bgr_fake, M)
else:
# logger.status(f"Swapping as-is")
result = face_swapper.get(target_img, target_face_single, source_face)
results[i] = result
elif wrong_gender == 1:
wrong_gender = 0
logger.status("Wrong target gender detected")
continue
else:
logger.status(f"No target face found for {face_num}")
elif src_wrong_gender == 1:
src_wrong_gender = 0
logger.status("Wrong source gender detected")
continue
else:
logger.status(f"No source face found for face number {source_face_idx}.")
result_images = [Image.fromarray(cv2.cvtColor(result, cv2.COLOR_BGR2RGB)) for result in results]
else:
logger.status("No source face(s) in the provided Index")
else:
logger.status("No source face(s) found")
return result_images