advanceblur / app.py
model2's picture
perf. updates
e9b2bf3
raw
history blame
11 kB
# TODO: Replace face images with face model to stop creating it every time
# TODO: Figure out .cache error
# TODO: Figure out comfyui-frontend error
# TODO: Preload retinaface_resnet50
# TODO: Preload nsfw model
# TODO: Max out final image size as original image size
# TODO: Double-check inclusion of all necessary custom nodes in repo
# TODO: UI/UX: Better display on mobile so folks don't miss the final output
# TODO: Upgrade gradio
import logging
import os
import sys
from typing import Any, Mapping, Sequence, Union
import gradio as gr
import spaces
import torch
import yaml
from huggingface_hub import hf_hub_download
import folder_paths
from comfy import model_management
from nodes import NODE_CLASS_MAPPINGS
# Load available models from HF
hf_hub_download(
repo_id="uwg/upscaler",
filename="ESRGAN/4x_NMKD-Siax_200k.pth",
local_dir="models/upscale_models",
)
hf_hub_download(
repo_id="ezioruan/inswapper_128.onnx",
filename="inswapper_128.onnx",
local_dir="models/insightface",
)
hf_hub_download(
repo_id="ziixzz/codeformer-v0.1.0.pth",
filename="codeformer-v0.1.0.pth",
local_dir="models/facerestore_models",
)
# ReActor has its own special snowflake installation
os.system("cd custom_nodes/ComfyUI-ReActor && python install.py")
def import_custom_nodes() -> None:
"""Find all custom nodes in the custom_nodes folder and add those node objects to NODE_CLASS_MAPPINGS
This function sets up a new asyncio event loop, initializes the PromptServer,
creates a PromptQueue, and initializes the custom nodes.
"""
import asyncio
import execution
import server
from nodes import init_extra_nodes
# Creating a new event loop and setting it as the default loop
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
# Creating an instance of PromptServer with the loop
server_instance = server.PromptServer(loop)
execution.PromptQueue(server_instance)
# Initializing custom nodes
init_extra_nodes()
# Preload nodes, models.
import_custom_nodes()
load_images_node = NODE_CLASS_MAPPINGS["LoadImagesFromFolderKJ"]()
loadimage = NODE_CLASS_MAPPINGS["LoadImage"]()
upscalemodelloader = NODE_CLASS_MAPPINGS["UpscaleModelLoader"]()
reactorbuildfacemodel = NODE_CLASS_MAPPINGS["ReActorBuildFaceModel"]()
imageresize = NODE_CLASS_MAPPINGS["ImageResize+"]()
reactorfaceswap = NODE_CLASS_MAPPINGS["ReActorFaceSwap"]()
imageupscalewithmodel = NODE_CLASS_MAPPINGS["ImageUpscaleWithModel"]()
saveimage = NODE_CLASS_MAPPINGS["SaveImage"]()
upscale_model = upscalemodelloader.load_model(model_name="ESRGAN/4x_NMKD-Siax_200k.pth")
model_loaders = [
upscalemodelloader,
reactorfaceswap,
imageupscalewithmodel,
]
valid_models = [
getattr(loader[0], "patcher", loader[0])
for loader in model_loaders
if not isinstance(getattr(loader[0], "patcher", None), dict)
]
model_management.load_models_gpu(valid_models)
def load_extra_path_config(yaml_path):
with open(yaml_path, "r", encoding="utf-8") as stream:
config = yaml.safe_load(stream)
yaml_dir = os.path.dirname(os.path.abspath(yaml_path))
for c in config:
conf = config[c]
if conf is None:
continue
base_path = None
if "base_path" in conf:
base_path = conf.pop("base_path")
base_path = os.path.expandvars(os.path.expanduser(base_path))
if not os.path.isabs(base_path):
base_path = os.path.abspath(os.path.join(yaml_dir, base_path))
is_default = False
if "is_default" in conf:
is_default = conf.pop("is_default")
for x in conf:
for y in conf[x].split("\n"):
if len(y) == 0:
continue
full_path = y
if base_path:
full_path = os.path.join(base_path, full_path)
elif not os.path.isabs(full_path):
full_path = os.path.abspath(os.path.join(yaml_dir, y))
normalized_path = os.path.normpath(full_path)
logging.info(
"Adding extra search path {} {}".format(x, normalized_path)
)
folder_paths.add_model_folder_path(x, normalized_path, is_default)
def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any:
"""Returns the value at the given index of a sequence or mapping.
If the object is a sequence (like list or string), returns the value at the given index.
If the object is a mapping (like a dictionary), returns the value at the index-th key.
Some return a dictionary, in these cases, we look for the "results" key
Args:
obj (Union[Sequence, Mapping]): The object to retrieve the value from.
index (int): The index of the value to retrieve.
Returns:
Any: The value at the given index.
Raises:
IndexError: If the index is out of bounds for the object and the object is not a mapping.
"""
try:
return obj[index]
except KeyError:
return obj["result"][index]
def find_path(name: str, path: str = None) -> str:
"""
Recursively looks at parent folders starting from the given path until it finds the given name.
Returns the path as a Path object if found, or None otherwise.
"""
# If no path is given, use the current working directory
if path is None:
path = os.getcwd()
# Check if the current directory contains the name
if name in os.listdir(path):
path_name = os.path.join(path, name)
print(f"{name} found: {path_name}")
return path_name
# Get the parent directory
parent_directory = os.path.dirname(path)
# If the parent directory is the same as the current directory, we've reached the root and stop the search
if parent_directory == path:
return None
# Recursively call the function with the parent directory
return find_path(name, parent_directory)
def add_comfyui_directory_to_sys_path() -> None:
"""
Add 'ComfyUI' to the sys.path
"""
comfyui_path = find_path("ComfyUI")
if comfyui_path is not None and os.path.isdir(comfyui_path):
sys.path.append(comfyui_path)
print(f"'{comfyui_path}' added to sys.path")
def add_extra_model_paths() -> None:
"""
Parse the optional extra_model_paths.yaml file and add the parsed paths to the sys.path.
"""
extra_model_paths = find_path("extra_model_paths.yaml")
if extra_model_paths is not None:
load_extra_path_config(extra_model_paths)
else:
print("Could not find the extra_model_paths config file.")
add_comfyui_directory_to_sys_path()
add_extra_model_paths()
@spaces.GPU(duration=60)
def advance_blur(input_image):
with torch.inference_mode():
source_images_batch = load_images_node.load_images(
folder="source_faces/",
width=1024,
height=1024,
keep_aspect_ratio="crop",
image_load_cap=0,
start_index=0,
include_subfolders=False,
)
loaded_input_image = loadimage.load_image(
image=input_image,
)
face_model = reactorbuildfacemodel.blend_faces(
save_mode=True,
send_only=False,
face_model_name="default",
compute_method="Mean",
images=get_value_at_index(source_images_batch, 0),
)
resized_input_image = imageresize.execute(
width=2560,
height=2560,
interpolation="bicubic",
method="keep proportion",
condition="downscale if bigger",
multiple_of=0,
image=get_value_at_index(loaded_input_image, 0),
)
swapped_image = reactorfaceswap.execute(
enabled=True,
swap_model="inswapper_128.onnx",
facedetection="retinaface_resnet50",
face_restore_model="codeformer-v0.1.0.pth",
face_restore_visibility=1,
codeformer_weight=1,
detect_gender_input="no",
detect_gender_source="no",
input_faces_index="0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99",
source_faces_index="0",
console_log_level=2,
input_image=get_value_at_index(resized_input_image, 0),
face_model=get_value_at_index(face_model, 0),
)
upscaled_image = imageupscalewithmodel.upscale(
upscale_model=get_value_at_index(upscale_model, 0),
image=get_value_at_index(swapped_image, 0),
)
final_image = imageresize.execute(
width=2560,
height=2560,
interpolation="lanczos",
method="keep proportion",
condition="downscale if bigger",
multiple_of=0,
image=get_value_at_index(upscaled_image, 0),
)
saved_image = saveimage.save_images(
filename_prefix="advance_blur",
images=get_value_at_index(final_image, 0),
)
saved_path = f"output/{saved_image['ui']['images'][0]['filename']}"
return saved_path
if __name__ == "__main__":
# Start your Gradio app
with gr.Blocks() as app:
# Add a title
gr.Markdown(
"# Advance Blur"
""
'Advance Blur uses a sophisticated technique called "Vance Blurring"'
" to anonymize images of people. This process also removes identifiable"
" metadata. Uploaded images and data are permanently deleted after processing."
""
"Advance Blur works best when subjects face the camera. Any similarity to"
" persons, living or dead, is purely coincidental, comedic, karmic justice,"
" and/or parody."
""
"_No sofas, couches, chaises, or other living-room furniture have been harmed in "
" the production of this application._"
)
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input Image", type="filepath")
generate_btn = gr.Button("Submit")
with gr.Column():
# The output image
output_image = gr.Image(label="Generated Image")
# When clicking the button, it will trigger the `generate_image` function, with the respective inputs
# and the output an image
generate_btn.click(
fn=advance_blur, inputs=[input_image], outputs=[output_image]
)
app.launch(share=True)
gr.Markdown('#### Have you even said "Thank you"?')