advanceblur / app.py
model2's picture
faster upscale
09b97b3
raw
history blame
10.9 kB
# TODO: UI/UX: Better display on mobile so folks don't miss the final output
# TODO: Upgrade gradio
import logging
import os
import sys
from typing import Any, Mapping, Sequence, Union
import gradio as gr
import numpy as np
import spaces
import torch
import yaml
from huggingface_hub import hf_hub_download
from PIL import Image
import folder_paths
from nodes import NODE_CLASS_MAPPINGS
# Load available models from HF
hf_hub_download(
repo_id="Phips/2xNomosUni_span_multijpg_ldl",
filename="2xNomosUni_span_multijpg_ldl.safetensors",
local_dir="models/upscale_models",
)
hf_hub_download(
repo_id="ezioruan/inswapper_128.onnx",
filename="inswapper_128.onnx",
local_dir="models/insightface",
)
hf_hub_download(
repo_id="ziixzz/codeformer-v0.1.0.pth",
filename="codeformer-v0.1.0.pth",
local_dir="models/facerestore_models",
)
hf_hub_download(
repo_id="gmk123/GFPGAN",
filename="detection_Resnet50_Final.pth",
local_dir="models/facedetection",
)
hf_hub_download(
repo_id="gmk123/GFPGAN",
filename="parsing_parsenet.pth",
local_dir="models/facedetection",
)
hf_hub_download(
repo_id="vladmandic/insightface-faceanalysis",
filename="buffalo_l.zip",
local_dir="models/insightface/models",
)
hf_hub_download(
repo_id="model2/advance_face_model",
filename="advance_face_model.safetensors",
local_dir="models/reactor/faces",
)
# ReActor has its own special snowflake installation
os.system("cd custom_nodes/ComfyUI-ReActor && python install.py")
def import_custom_nodes() -> None:
"""Find all custom nodes in the custom_nodes folder and add those node objects to NODE_CLASS_MAPPINGS
This function sets up a new asyncio event loop, initializes the PromptServer,
creates a PromptQueue, and initializes the custom nodes.
"""
import asyncio
import execution
import server
from nodes import init_extra_nodes
# Creating a new event loop and setting it as the default loop
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
# Creating an instance of PromptServer with the loop
server_instance = server.PromptServer(loop)
execution.PromptQueue(server_instance)
# Initializing custom nodes
init_extra_nodes()
# Preload nodes, models.
import_custom_nodes()
loadimage = NODE_CLASS_MAPPINGS["LoadImage"]()
getimagesize = NODE_CLASS_MAPPINGS["GetImageSize+"]()
upscalemodelloader = NODE_CLASS_MAPPINGS["UpscaleModelLoader"]()
reactorloadfacemodel = NODE_CLASS_MAPPINGS["ReActorLoadFaceModel"]()
FACE_MODEL = reactorloadfacemodel.load_model(
face_model="advance_face_model.safetensors"
)
imageresize = NODE_CLASS_MAPPINGS["ImageResize+"]()
reactorfaceswap = NODE_CLASS_MAPPINGS["ReActorFaceSwap"]()
imageupscalewithmodel = NODE_CLASS_MAPPINGS["ImageUpscaleWithModel"]()
UPSCALE_MODEL = upscalemodelloader.load_model(model_name="2xNomosUni_span_multijpg_ldl.safetensors")
def load_extra_path_config(yaml_path):
with open(yaml_path, "r", encoding="utf-8") as stream:
config = yaml.safe_load(stream)
yaml_dir = os.path.dirname(os.path.abspath(yaml_path))
for c in config:
conf = config[c]
if conf is None:
continue
base_path = None
if "base_path" in conf:
base_path = conf.pop("base_path")
base_path = os.path.expandvars(os.path.expanduser(base_path))
if not os.path.isabs(base_path):
base_path = os.path.abspath(os.path.join(yaml_dir, base_path))
is_default = False
if "is_default" in conf:
is_default = conf.pop("is_default")
for x in conf:
for y in conf[x].split("\n"):
if len(y) == 0:
continue
full_path = y
if base_path:
full_path = os.path.join(base_path, full_path)
elif not os.path.isabs(full_path):
full_path = os.path.abspath(os.path.join(yaml_dir, y))
normalized_path = os.path.normpath(full_path)
logging.info(
"Adding extra search path {} {}".format(x, normalized_path)
)
folder_paths.add_model_folder_path(x, normalized_path, is_default)
def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any:
"""Returns the value at the given index of a sequence or mapping.
If the object is a sequence (like list or string), returns the value at the given index.
If the object is a mapping (like a dictionary), returns the value at the index-th key.
Some return a dictionary, in these cases, we look for the "results" key
Args:
obj (Union[Sequence, Mapping]): The object to retrieve the value from.
index (int): The index of the value to retrieve.
Returns:
Any: The value at the given index.
Raises:
IndexError: If the index is out of bounds for the object and the object is not a mapping.
"""
try:
return obj[index]
except KeyError:
return obj["result"][index]
def find_path(name: str, path: str = None) -> str:
"""
Recursively looks at parent folders starting from the given path until it finds the given name.
Returns the path as a Path object if found, or None otherwise.
"""
# If no path is given, use the current working directory
if path is None:
path = os.getcwd()
# Check if the current directory contains the name
if name in os.listdir(path):
path_name = os.path.join(path, name)
print(f"{name} found: {path_name}")
return path_name
# Get the parent directory
parent_directory = os.path.dirname(path)
# If the parent directory is the same as the current directory, we've reached the root and stop the search
if parent_directory == path:
return None
# Recursively call the function with the parent directory
return find_path(name, parent_directory)
def add_comfyui_directory_to_sys_path() -> None:
"""
Add 'ComfyUI' to the sys.path
"""
comfyui_path = find_path("ComfyUI")
if comfyui_path is not None and os.path.isdir(comfyui_path):
sys.path.append(comfyui_path)
print(f"'{comfyui_path}' added to sys.path")
def add_extra_model_paths() -> None:
"""
Parse the optional extra_model_paths.yaml file and add the parsed paths to the sys.path.
"""
extra_model_paths = find_path("extra_model_paths.yaml")
if extra_model_paths is not None:
load_extra_path_config(extra_model_paths)
else:
print("Could not find the extra_model_paths config file.")
add_comfyui_directory_to_sys_path()
add_extra_model_paths()
@spaces.GPU(duration=60)
def advance_blur(input_image):
with torch.inference_mode():
image_file_name = os.path.splitext(os.path.basename(input_image))[0]
loaded_input_image = loadimage.load_image(
image=input_image,
)
image_size = getimagesize.execute(
image=get_value_at_index(loaded_input_image, 0),
)
original_width = get_value_at_index(image_size, 0)
original_height = get_value_at_index(image_size, 1)
resized_input_image = imageresize.execute(
width=2560,
height=2560,
interpolation="bicubic",
method="keep proportion",
condition="downscale if bigger",
multiple_of=0,
image=get_value_at_index(loaded_input_image, 0),
)
swapped_image = reactorfaceswap.execute(
enabled=True,
swap_model="inswapper_128.onnx",
facedetection="retinaface_resnet50",
face_restore_model="codeformer-v0.1.0.pth",
face_restore_visibility=1,
codeformer_weight=1,
detect_gender_input="no",
detect_gender_source="no",
input_faces_index="0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99",
source_faces_index="0",
console_log_level=2,
input_image=get_value_at_index(resized_input_image, 0),
face_model=get_value_at_index(FACE_MODEL, 0),
)
upscaled_image = imageupscalewithmodel.upscale(
upscale_model=get_value_at_index(UPSCALE_MODEL, 0),
image=get_value_at_index(swapped_image, 0),
)
final_image = imageresize.execute(
width=original_width,
height=original_height,
interpolation="lanczos",
method="keep proportion",
condition="downscale if bigger",
multiple_of=0,
image=get_value_at_index(upscaled_image, 0),
)
img = Image.fromarray(
np.clip(
(255.0 * get_value_at_index(final_image, 0)[0].cpu().numpy()), 0, 255
).astype(np.uint8)
)
outpath = f"advance-blurred-{os.urandom(16).hex()}.jpg"
img.save(outpath, quality=80, dpi=(72, 72))
return outpath
if __name__ == "__main__":
# Start your Gradio app
css_code = """
#fixed-image-size {
max-width: 500px !important; /* fix the width of image */
height: 500px !important; /* fix the height of image */
object-fit: cover; /* makes the image fill area without stretching */
}
"""
with gr.Blocks(css=css_code, theme=gr.themes.Base()) as app:
gr.Markdown(
"""
# Advance Blur
**Advance Blur** uses a sophisticated technique called "Vance Blurring" to anonymize images of people.
This process also removes identifiable metadata.
Uploaded images and data are permanently deleted after processing.
_No sofas, couches, chaises, or other living-room furniture were harmed in the production of this application._
""",
)
with gr.Row():
with gr.Column():
input_image = gr.Image(
type="filepath",
label="Upload Your Image",
elem_id="fixed-image-size",
show_label=True,
)
submit_btn = gr.Button("Submit", variant="primary")
with gr.Column():
output_image = gr.Image(
label="Vance Blurred Image",
elem_id="fixed-image-size",
show_label=True,
)
# Trigger your blur function
submit_btn.click(fn=advance_blur, inputs=[input_image], outputs=[output_image])
app.launch(share=True)