Spaces:
Sleeping
Sleeping
File size: 13,287 Bytes
1a979d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
streamlit_app.py import streamlit as st from streamlit_tags import st_tags_sidebar import pandas as pd import json from datetime import datetime from scraper import fetch_html_selenium, save_raw_data, format_data, save_formatted_data, calculate_price, html_to_markdown_with_readability, create_dynamic_listing_model, create_listings_container_model, scrape_url from pagination_detector import detect_pagination_elements, PaginationData import re from urllib.parse import urlparse from assets import PRICING import os from pydantic import BaseModel def serialize_pydantic(obj): if isinstance(obj, BaseModel): return obj.dict() raise TypeError(f'Object of type {obj.__class__.__name__} is not JSON serializable') # Initialize Streamlit app st.set_page_config(page_title="Universal Web Scraper", page_icon="🦑") st.title("Universal Web Scraper 🦑") # Initialize session state variables if they don't exist if 'results' not in st.session_state: st.session_state['results'] = None if 'perform_scrape' not in st.session_state: st.session_state['perform_scrape'] = False # Sidebar components st.sidebar.title("Web Scraper Settings") model_selection = st.sidebar.selectbox("Select Model", options=list(PRICING.keys()), index=0) url_input = st.sidebar.text_input("Enter URL(s) separated by whitespace") # Add toggle to show/hide tags field show_tags = st.sidebar.toggle("Enable Scraping") # Conditionally show tags input based on the toggle tags = [] if show_tags: tags = st_tags_sidebar( label='Enter Fields to Extract:', text='Press enter to add a tag', value=[], suggestions=[], maxtags=-1, key='tags_input' ) st.sidebar.markdown("---") # Add pagination toggle and input use_pagination = st.sidebar.toggle("Enable Pagination") pagination_details = None if use_pagination: pagination_details = st.sidebar.text_input("Enter Pagination Details (optional)", help="Describe how to navigate through pages (e.g., 'Next' button class, URL pattern)") st.sidebar.markdown("---") def generate_unique_folder_name(url): timestamp = datetime.now().strftime('%Y_%m_%d__%H_%M_%S') # Parse the URL parsed_url = urlparse(url) # Extract the domain name domain = parsed_url.netloc or parsed_url.path.split('/')[0] # Remove 'www.' if present domain = re.sub(r'^www\.', '', domain) # Remove any non-alphanumeric characters and replace with underscores clean_domain = re.sub(r'\W+', '_', domain) return f"{clean_domain}_{timestamp}" def scrape_multiple_urls(urls, fields, selected_model): output_folder = os.path.join('output', generate_unique_folder_name(urls[0])) os.makedirs(output_folder, exist_ok=True) total_input_tokens = 0 total_output_tokens = 0 total_cost = 0 all_data = [] first_url_markdown = None for i, url in enumerate(urls, start=1): raw_html = fetch_html_selenium(url) markdown = html_to_markdown_with_readability(raw_html) if i == 1: first_url_markdown = markdown input_tokens, output_tokens, cost, formatted_data = scrape_url(url, fields, selected_model, output_folder, i, markdown) total_input_tokens += input_tokens total_output_tokens += output_tokens total_cost += cost all_data.append(formatted_data) return output_folder, total_input_tokens, total_output_tokens, total_cost, all_data, first_url_markdown # Define the scraping function def perform_scrape(): timestamp = datetime.now().strftime('%Y%m%d_%H%M%S') raw_html = fetch_html_selenium(url_input) markdown = html_to_markdown_with_readability(raw_html) save_raw_data(markdown, timestamp) # Detect pagination if enabled pagination_info = None if use_pagination: pagination_data, token_counts, pagination_price = detect_pagination_elements( url_input, pagination_details, model_selection, markdown ) pagination_info = { "page_urls": pagination_data.page_urls, "token_counts": token_counts, "price": pagination_price } # Initialize token and cost variables with default values input_tokens = 0 output_tokens = 0 total_cost = 0 if show_tags: DynamicListingModel = create_dynamic_listing_model(tags) DynamicListingsContainer = create_listings_container_model(DynamicListingModel) formatted_data, tokens_count = format_data( markdown, DynamicListingsContainer, DynamicListingModel, model_selection ) input_tokens, output_tokens, total_cost = calculate_price(tokens_count, model=model_selection) df = save_formatted_data(formatted_data, timestamp) else: formatted_data = None df = None return df, formatted_data, markdown, input_tokens, output_tokens, total_cost, timestamp, pagination_info if st.sidebar.button("Scrape"): with st.spinner('Please wait... Data is being scraped.'): urls = url_input.split() field_list = tags output_folder, total_input_tokens, total_output_tokens, total_cost, all_data, first_url_markdown = scrape_multiple_urls(urls, field_list, model_selection) # Perform pagination if enabled and only one URL is provided pagination_info = None if use_pagination and len(urls) == 1: try: pagination_result = detect_pagination_elements( urls[0], pagination_details, model_selection, first_url_markdown ) if pagination_result is not None: pagination_data, token_counts, pagination_price = pagination_result # Handle both PaginationData objects and dictionaries if isinstance(pagination_data, PaginationData): page_urls = pagination_data.page_urls elif isinstance(pagination_data, dict): page_urls = pagination_data.get("page_urls", []) else: page_urls = [] pagination_info = { "page_urls": page_urls, "token_counts": token_counts, "price": pagination_price } else: st.warning("Pagination detection returned None. No pagination information available.") except Exception as e: st.error(f"An error occurred during pagination detection: {e}") pagination_info = { "page_urls": [], "token_counts": {"input_tokens": 0, "output_tokens": 0}, "price": 0.0 } st.session_state['results'] = (all_data, None, first_url_markdown, total_input_tokens, total_output_tokens, total_cost, output_folder, pagination_info) st.session_state['perform_scrape'] = True # Display results if they exist in session state if st.session_state['results']: all_data, _, _, input_tokens, output_tokens, total_cost, output_folder, pagination_info = st.session_state['results'] # Display scraping details in sidebar only if scraping was performed and the toggle is on if all_data and show_tags: st.sidebar.markdown("---") st.sidebar.markdown("### Scraping Details") st.sidebar.markdown("#### Token Usage") st.sidebar.markdown(f"*Input Tokens:* {input_tokens}") st.sidebar.markdown(f"*Output Tokens:* {output_tokens}") st.sidebar.markdown(f"**Total Cost:** :green-background[**${total_cost:.4f}**]") # Display scraped data in main area st.subheader("Scraped/Parsed Data") for i, data in enumerate(all_data, start=1): st.write(f"Data from URL {i}:") # Handle string data (convert to dict if it's JSON) if isinstance(data, str): try: data = json.loads(data) except json.JSONDecodeError: st.error(f"Failed to parse data as JSON for URL {i}") continue if isinstance(data, dict): if 'listings' in data and isinstance(data['listings'], list): df = pd.DataFrame(data['listings']) else: # If 'listings' is not in the dict or not a list, use the entire dict df = pd.DataFrame([data]) elif hasattr(data, 'listings') and isinstance(data.listings, list): # Handle the case where data is a Pydantic model listings = [item.dict() for item in data.listings] df = pd.DataFrame(listings) else: st.error(f"Unexpected data format for URL {i}") continue # Display the dataframe st.dataframe(df, use_container_width=True) # Download options st.subheader("Download Options") col1, col2 = st.columns(2) with col1: json_data = json.dumps(all_data, default=lambda o: o.dict() if hasattr(o, 'dict') else str(o), indent=4) st.download_button( "Download JSON", data=json_data, file_name="scraped_data.json" ) with col2: # Convert all data to a single DataFrame all_listings = [] for data in all_data: if isinstance(data, str): try: data = json.loads(data) except json.JSONDecodeError: continue if isinstance(data, dict) and 'listings' in data: all_listings.extend(data['listings']) elif hasattr(data, 'listings'): all_listings.extend([item.dict() for item in data.listings]) else: all_listings.append(data) combined_df = pd.DataFrame(all_listings) st.download_button( "Download CSV", data=combined_df.to_csv(index=False), file_name="scraped_data.csv" ) st.success(f"Scraping completed. Results saved in {output_folder}") # Add pagination details to sidebar if pagination_info and use_pagination: st.sidebar.markdown("---") st.sidebar.markdown("### Pagination Details") st.sidebar.markdown(f"**Number of Page URLs:** {len(pagination_info['page_urls'])}") st.sidebar.markdown("#### Pagination Token Usage") st.sidebar.markdown(f"*Input Tokens:* {pagination_info['token_counts']['input_tokens']}") st.sidebar.markdown(f"*Output Tokens:* {pagination_info['token_counts']['output_tokens']}") st.sidebar.markdown(f"**Pagination Cost:** :red-background[**${pagination_info['price']:.4f}**]") st.markdown("---") st.subheader("Pagination Information") pagination_df = pd.DataFrame(pagination_info["page_urls"], columns=["Page URLs"]) st.dataframe( pagination_df, column_config={ "Page URLs": st.column_config.LinkColumn("Page URLs") },use_container_width=True ) # Create columns for download buttons col1, col2 = st.columns(2) with col1: st.download_button( "Download Pagination JSON", data=json.dumps(pagination_info["page_urls"], indent=4), file_name=f"pagination_urls.json" ) with col2: st.download_button( "Download Pagination CSV", data=pagination_df.to_csv(index=False), file_name=f"pagination_urls.csv" ) # Display combined totals only if both scraping and pagination were performed and both toggles are on if all_data and pagination_info and show_tags and use_pagination: st.markdown("---") total_input_tokens = input_tokens + pagination_info['token_counts']['input_tokens'] total_output_tokens = output_tokens + pagination_info['token_counts']['output_tokens'] total_combined_cost = total_cost + pagination_info['price'] st.markdown("### Total Counts and Cost (Including Pagination)") st.markdown(f"**Total Input Tokens:** {total_input_tokens}") st.markdown(f"**Total Output Tokens:** {total_output_tokens}") st.markdown(f"**Total Combined Cost:** :green[**${total_combined_cost:.4f}**]") # Add a clear results button if st.sidebar.button("Clear Results"): st.session_state['results'] = None st.session_state['perform_scrape'] = False st.rerun() |