import os import sys import matplotlib.pyplot as plt from pandas.core.common import flatten import torch from torch import nn from torch import optim import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.utils.data import Dataset, DataLoader from torchvision import datasets, transforms, models import albumentations as A from albumentations.pytorch import ToTensorV2 from tqdm import tqdm import random sys.path.append('/workspace') import dataset train_transforms = A.Compose( [ A.SmallestMaxSize(max_size=350), A.ShiftScaleRotate(shift_limit=0.05, scale_limit=0.05, rotate_limit=360, p=0.5), A.RandomCrop(height=256, width=256), A.RGBShift(r_shift_limit=15, g_shift_limit=15, b_shift_limit=15, p=0.5), A.RandomBrightnessContrast(p=0.5), A.MultiplicativeNoise(multiplier=[0.5,2], per_channel=True, p=0.2), A.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), A.HueSaturationValue(hue_shift_limit=0.2, sat_shift_limit=0.2, val_shift_limit=0.2, p=0.5), A.RandomBrightnessContrast(brightness_limit=(-0.1,0.1), contrast_limit=(-0.1, 0.1), p=0.5), ToTensorV2(), ] ) test_transforms = A.Compose( [ A.SmallestMaxSize(max_size=350), A.CenterCrop(height=256, width=256), A.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), ToTensorV2(), ] ) dataset_CV = dataset.MotorbikeDataset_CV( root='/workspace/data/', train_transforms=train_transforms, val_transforms=test_transforms ) train_dataset, val_dataset = dataset_CV.get_split() train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True, drop_last=True) val_loader = DataLoader(val_dataset,batch_size=64, shuffle=False) device = torch.device("cuda:3") if torch.cuda.is_available() else torch.device("cpu") model = models.resnet50(pretrained=True) model.fc = nn.Sequential( nn.Dropout(0.5), nn.Linear(model.fc.in_features, 2) ) for n, p in model.named_parameters(): if 'fc' in n: p.requires_grad = True else: p.requires_grad = False model.to(device) criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9) scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.5) best_acc = 0.0 for epoch in range(10): model.train() running_loss = 0.0 for i, data in enumerate(train_loader, 0): inputs, labels = data[0].to(device), data[1].to(device) optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() scheduler.step() print(f'[{epoch + 1}, {i + 1:5d}] loss: {running_loss / 2000:.3f}') # print("TRAIN acc = {}".format(acc)) running_loss = 0.0 with torch.no_grad(): model.eval() running_loss = 0.0 correct =0 for i, data in enumerate(val_loader, 0): inputs, labels = data[0].to(device), data[1].to(device) outputs = model(inputs) _, preds = outputs.max(1) loss = criterion(outputs, labels) running_loss += loss.item() labels_one_hot = F.one_hot(labels, 2) outputs_one_hot = F.one_hot(preds, 2) correct = correct + (labels_one_hot + outputs_one_hot == 2).sum().to(torch.float) acc = 100 * correct / len(val_dataset) print(f'VAL: [{epoch + 1}, {i + 1:5d}] loss: {running_loss / len(val_loader):.3f}') print("VAL acc = {:.2f}".format(acc)) if best_acc < acc: torch.save(model.state_dict(), './result/best_model.pth')