MNCJihun commited on
Commit
e4dfec0
·
1 Parent(s): 67e9c3a

add sample images

Browse files
.DS_Store ADDED
Binary file (6.15 kB). View file
 
app.py CHANGED
@@ -1,20 +1,13 @@
1
- # %%
2
- import os, json, itertools, bisect, gc
 
3
  from PIL import Image
4
  import torch
5
  import torch.nn as nn
6
  import torchvision.models as models
7
  import torchvision.transforms as transforms
8
- import os
9
- import gradio as gr
10
- import albumentations as A
11
- from albumentations.pytorch import ToTensorV2
12
  import urllib.request
13
 
14
- MODEL_URL = "https://huggingface.co/caisarl76/HI_motorcycle_trunk_cls_model/resolve/main/best_model.pth"
15
- MODEL_PATH = "/tmp/best_model.pth"
16
- urllib.request.urlretrieve(MODEL_URL, MODEL_PATH)
17
-
18
  test_transforms = A.Compose(
19
  [
20
  A.SmallestMaxSize(max_size=350),
@@ -24,6 +17,12 @@ test_transforms = A.Compose(
24
  ]
25
  )
26
 
 
 
 
 
 
 
27
  def predict(img):
28
  img = Image.fromarray(img.astype('uint8'), 'RGB')
29
  img = transforms.ToTensor()(img).unsqueeze(0)
@@ -57,7 +56,8 @@ inputs = gr.inputs.Image()
57
  outputs = gr.outputs.Label(num_top_classes=1)
58
  gr.Interface(fn=predict,
59
  inputs=inputs,
60
- outputs=outputs).launch()
 
61
 
62
 
63
 
 
1
+ import gradio as gr
2
+ import albumentations as A
3
+ from albumentations.pytorch import ToTensorV2
4
  from PIL import Image
5
  import torch
6
  import torch.nn as nn
7
  import torchvision.models as models
8
  import torchvision.transforms as transforms
 
 
 
 
9
  import urllib.request
10
 
 
 
 
 
11
  test_transforms = A.Compose(
12
  [
13
  A.SmallestMaxSize(max_size=350),
 
17
  ]
18
  )
19
 
20
+ img_samples = os.listdir('./sample/')
21
+ MODEL_URL = "https://huggingface.co/caisarl76/HI_motorcycle_trunk_cls_model/resolve/main/best_model.pth"
22
+ MODEL_PATH = "/tmp/best_model.pth"
23
+ urllib.request.urlretrieve(MODEL_URL, MODEL_PATH)
24
+
25
+
26
  def predict(img):
27
  img = Image.fromarray(img.astype('uint8'), 'RGB')
28
  img = transforms.ToTensor()(img).unsqueeze(0)
 
56
  outputs = gr.outputs.Label(num_top_classes=1)
57
  gr.Interface(fn=predict,
58
  inputs=inputs,
59
+ outputs=outputs,
60
+ examples=img_samples).launch()
61
 
62
 
63
 
sample/n_0000000130.jpg ADDED
sample/n_0000000148.jpg ADDED
sample/t_0000000112.jpg ADDED
sample/t_0000000121.jpg ADDED
sample/t_0000000231.jpg ADDED