Spaces:
Runtime error
Runtime error
File size: 3,757 Bytes
25322fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
import os
import sys
import matplotlib.pyplot as plt
from pandas.core.common import flatten
import torch
from torch import nn
from torch import optim
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from torchvision import datasets, transforms, models
import albumentations as A
from albumentations.pytorch import ToTensorV2
from tqdm import tqdm
import random
sys.path.append('/workspace')
import dataset
train_transforms = A.Compose(
[
A.SmallestMaxSize(max_size=350),
A.ShiftScaleRotate(shift_limit=0.05, scale_limit=0.05, rotate_limit=360, p=0.5),
A.RandomCrop(height=256, width=256),
A.RGBShift(r_shift_limit=15, g_shift_limit=15, b_shift_limit=15, p=0.5),
A.RandomBrightnessContrast(p=0.5),
A.MultiplicativeNoise(multiplier=[0.5,2], per_channel=True, p=0.2),
A.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
A.HueSaturationValue(hue_shift_limit=0.2, sat_shift_limit=0.2, val_shift_limit=0.2, p=0.5),
A.RandomBrightnessContrast(brightness_limit=(-0.1,0.1), contrast_limit=(-0.1, 0.1), p=0.5),
ToTensorV2(),
]
)
test_transforms = A.Compose(
[
A.SmallestMaxSize(max_size=350),
A.CenterCrop(height=256, width=256),
A.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
ToTensorV2(),
]
)
dataset_CV = dataset.MotorbikeDataset_CV(
root='/workspace/data/',
train_transforms=train_transforms,
val_transforms=test_transforms
)
train_dataset, val_dataset = dataset_CV.get_split()
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True, drop_last=True)
val_loader = DataLoader(val_dataset,batch_size=64, shuffle=False)
device = torch.device("cuda:3") if torch.cuda.is_available() else torch.device("cpu")
model = models.resnet50(pretrained=True)
model.fc = nn.Sequential(
nn.Dropout(0.5),
nn.Linear(model.fc.in_features, 2)
)
for n, p in model.named_parameters():
if 'fc' in n:
p.requires_grad = True
else:
p.requires_grad = False
model.to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.5)
best_acc = 0.0
for epoch in range(10):
model.train()
running_loss = 0.0
for i, data in enumerate(train_loader, 0):
inputs, labels = data[0].to(device), data[1].to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
scheduler.step()
print(f'[{epoch + 1}, {i + 1:5d}] loss: {running_loss / 2000:.3f}')
# print("TRAIN acc = {}".format(acc))
running_loss = 0.0
with torch.no_grad():
model.eval()
running_loss = 0.0
correct =0
for i, data in enumerate(val_loader, 0):
inputs, labels = data[0].to(device), data[1].to(device)
outputs = model(inputs)
_, preds = outputs.max(1)
loss = criterion(outputs, labels)
running_loss += loss.item()
labels_one_hot = F.one_hot(labels, 2)
outputs_one_hot = F.one_hot(preds, 2)
correct = correct + (labels_one_hot + outputs_one_hot == 2).sum().to(torch.float)
acc = 100 * correct / len(val_dataset)
print(f'VAL: [{epoch + 1}, {i + 1:5d}] loss: {running_loss / len(val_loader):.3f}')
print("VAL acc = {:.2f}".format(acc))
if best_acc < acc:
torch.save(model.state_dict(), './result/best_model.pth') |