File size: 3,757 Bytes
25322fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import os
import sys

import matplotlib.pyplot as plt
from pandas.core.common import flatten

import torch
from torch import nn
from torch import optim
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from torchvision import datasets, transforms, models
import albumentations as A
from albumentations.pytorch import ToTensorV2

from tqdm import tqdm
import random

sys.path.append('/workspace')
import dataset



train_transforms = A.Compose(
    [
        A.SmallestMaxSize(max_size=350),
        A.ShiftScaleRotate(shift_limit=0.05, scale_limit=0.05, rotate_limit=360, p=0.5),
        A.RandomCrop(height=256, width=256),
        A.RGBShift(r_shift_limit=15, g_shift_limit=15, b_shift_limit=15, p=0.5),
        A.RandomBrightnessContrast(p=0.5),
        A.MultiplicativeNoise(multiplier=[0.5,2], per_channel=True, p=0.2),
        A.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
        A.HueSaturationValue(hue_shift_limit=0.2, sat_shift_limit=0.2, val_shift_limit=0.2, p=0.5),
        A.RandomBrightnessContrast(brightness_limit=(-0.1,0.1), contrast_limit=(-0.1, 0.1), p=0.5),
        ToTensorV2(),
    ]
)

test_transforms = A.Compose(
    [
        A.SmallestMaxSize(max_size=350),
        A.CenterCrop(height=256, width=256),
        A.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
        ToTensorV2(),
    ]
)

dataset_CV = dataset.MotorbikeDataset_CV(
    root='/workspace/data/',
    train_transforms=train_transforms,
    val_transforms=test_transforms
    )

train_dataset, val_dataset = dataset_CV.get_split()

train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True, drop_last=True)
val_loader = DataLoader(val_dataset,batch_size=64, shuffle=False)

device = torch.device("cuda:3") if torch.cuda.is_available() else torch.device("cpu")

model = models.resnet50(pretrained=True)
model.fc = nn.Sequential(
    nn.Dropout(0.5),
    nn.Linear(model.fc.in_features, 2)
)

for n, p in model.named_parameters():
    if 'fc' in n:
        p.requires_grad = True
    else:
        p.requires_grad = False

model.to(device)

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.5)
best_acc = 0.0

for epoch in range(10):
    model.train()
    running_loss = 0.0
    for i, data in enumerate(train_loader, 0):
        inputs, labels = data[0].to(device), data[1].to(device)
        
        optimizer.zero_grad()
        
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        running_loss += loss.item()
    scheduler.step()
    
    print(f'[{epoch + 1}, {i + 1:5d}] loss: {running_loss / 2000:.3f}')
    # print("TRAIN acc = {}".format(acc))
    running_loss = 0.0
    
    with torch.no_grad():
        model.eval()
        running_loss = 0.0
        correct =0
        for i, data in enumerate(val_loader, 0):
            inputs, labels = data[0].to(device), data[1].to(device)
            outputs = model(inputs)
            _, preds = outputs.max(1)
            loss = criterion(outputs, labels)
            running_loss += loss.item()
            labels_one_hot = F.one_hot(labels, 2)
            outputs_one_hot = F.one_hot(preds, 2)
            correct = correct + (labels_one_hot + outputs_one_hot == 2).sum().to(torch.float)
        
        acc = 100 * correct / len(val_dataset)
        print(f'VAL: [{epoch + 1}, {i + 1:5d}] loss: {running_loss / len(val_loader):.3f}')
        print("VAL acc = {:.2f}".format(acc))
        if best_acc < acc:
            torch.save(model.state_dict(), './result/best_model.pth')