|
import gradio as gr |
|
import numpy as np |
|
|
|
import os |
|
from PIL import Image |
|
import requests |
|
from io import BytesIO |
|
import io |
|
import base64 |
|
|
|
hf_token = os.environ.get("HF_TOKEN") |
|
auth_headers = {"api_token": hf_token} |
|
|
|
def convert_mask_image_to_base64_string(mask_image): |
|
buffer = io.BytesIO() |
|
mask_image.save(buffer, format="PNG") |
|
|
|
image_base64_string = base64.b64encode(buffer.getvalue()).decode('utf-8') |
|
return f",{image_base64_string}" |
|
|
|
def download_image(url): |
|
response = requests.get(url) |
|
return Image.open(BytesIO(response.content)).convert("RGB") |
|
|
|
def eraser_api_call(image_base64_file, mask_base64_file, seed, mask_type, original_quality, guidance_scale): |
|
|
|
|
|
url = "http://engine.int.bria-api.com/v1/eraser" |
|
|
|
payload = { |
|
"file": image_base64_file, |
|
"mask_file": mask_base64_file, |
|
"seed": seed, |
|
"mask_type": mask_type, |
|
"original_quality": original_quality, |
|
"text_guidance_scale": guidance_scale |
|
} |
|
response = requests.post(url, json=payload, headers=auth_headers) |
|
response = response.json() |
|
res_image = download_image(response["result_url"]) |
|
|
|
return res_image |
|
|
|
ratios_map = { |
|
0.5:{"width":704,"height":1408}, |
|
0.57:{"width":768,"height":1344}, |
|
0.68:{"width":832,"height":1216}, |
|
0.72:{"width":832,"height":1152}, |
|
0.78:{"width":896,"height":1152}, |
|
0.82:{"width":896,"height":1088}, |
|
0.88:{"width":960,"height":1088}, |
|
0.94:{"width":960,"height":1024}, |
|
1.00:{"width":1024,"height":1024}, |
|
1.13:{"width":1088,"height":960}, |
|
1.21:{"width":1088,"height":896}, |
|
1.29:{"width":1152,"height":896}, |
|
1.38:{"width":1152,"height":832}, |
|
1.46:{"width":1216,"height":832}, |
|
1.67:{"width":1280,"height":768}, |
|
1.75:{"width":1344,"height":768}, |
|
2.00:{"width":1408,"height":704} |
|
} |
|
ratios = np.array(list(ratios_map.keys())) |
|
|
|
|
|
|
|
def get_masked_image(image, image_mask, width, height): |
|
image_mask = image_mask |
|
image_mask = image_mask.resize((width, height)) |
|
image_mask_pil = image_mask |
|
image = np.array(image.convert("RGB")).astype(np.float32) / 255.0 |
|
image_mask = np.array(image_mask_pil.convert("L")).astype(np.float32) / 255.0 |
|
assert image.shape[0:1] == image_mask.shape[0:1], "image and image_mask must have the same image size" |
|
masked_image_to_present = image.copy() |
|
masked_image_to_present[image_mask > 0.5] = (0.5,0.5,0.5) |
|
image[image_mask > 0.5] = 0.5 |
|
image = Image.fromarray((image * 255.0).astype(np.uint8)) |
|
masked_image_to_present = Image.fromarray((masked_image_to_present * 255.0).astype(np.uint8)) |
|
return image, image_mask_pil, masked_image_to_present |
|
|
|
|
|
def get_size(init_image): |
|
w,h=init_image.size |
|
curr_ratio = w/h |
|
ind = np.argmin(np.abs(curr_ratio-ratios)) |
|
ratio = ratios[ind] |
|
chosen_ratio = ratios_map[ratio] |
|
w,h = chosen_ratio['width'], chosen_ratio['height'] |
|
|
|
return w,h |
|
|
|
|
|
def read_content(file_path: str) -> str: |
|
"""read the content of target file |
|
""" |
|
with open(file_path, 'r', encoding='utf-8') as f: |
|
content = f.read() |
|
|
|
return content |
|
|
|
def predict(dict, guidance_scale=1.2, seed=123456): |
|
|
|
init_image = Image.fromarray(dict['background'][:, :, :3], 'RGB') |
|
mask = Image.fromarray(dict['layers'][0][:,:,3], 'L') |
|
|
|
image_base64_file = convert_mask_image_to_base64_string(init_image) |
|
mask_base64_file = convert_mask_image_to_base64_string(mask) |
|
|
|
mask_type = "brush" |
|
original_quality = True |
|
gen_img = eraser_api_call(image_base64_file, mask_base64_file, seed, mask_type, original_quality, guidance_scale) |
|
|
|
return gen_img |
|
|
|
|
|
css = ''' |
|
.gradio-container{max-width: 1100px !important} |
|
#image_upload{min-height:400px} |
|
#image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 400px} |
|
#mask_radio .gr-form{background:transparent; border: none} |
|
#word_mask{margin-top: .75em !important} |
|
#word_mask textarea:disabled{opacity: 0.3} |
|
.footer {margin-bottom: 45px;margin-top: 35px;text-align: center;border-bottom: 1px solid #e5e5e5} |
|
.footer>p {font-size: .8rem; display: inline-block; padding: 0 10px;transform: translateY(10px);background: white} |
|
.dark .footer {border-color: #303030} |
|
.dark .footer>p {background: #0b0f19} |
|
.acknowledgments h4{margin: 1.25em 0 .25em 0;font-weight: bold;font-size: 115%} |
|
#image_upload .touch-none{display: flex} |
|
@keyframes spin { |
|
from { |
|
transform: rotate(0deg); |
|
} |
|
to { |
|
transform: rotate(360deg); |
|
} |
|
} |
|
#share-btn-container {padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; max-width: 13rem; margin-left: auto;} |
|
div#share-btn-container > div {flex-direction: row;background: black;align-items: center} |
|
#share-btn-container:hover {background-color: #060606} |
|
#share-btn {all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.5rem !important; padding-bottom: 0.5rem !important;right:0;} |
|
#share-btn * {all: unset} |
|
#share-btn-container div:nth-child(-n+2){width: auto !important;min-height: 0px !important;} |
|
#share-btn-container .wrap {display: none !important} |
|
#share-btn-container.hidden {display: none!important} |
|
#prompt input{width: calc(100% - 160px);border-top-right-radius: 0px;border-bottom-right-radius: 0px;} |
|
#run_button{position:absolute;margin-top: 11px;right: 0;margin-right: 0.8em;border-bottom-left-radius: 0px; |
|
border-top-left-radius: 0px;} |
|
#prompt-container{margin-top:-18px;} |
|
#prompt-container .form{border-top-left-radius: 0;border-top-right-radius: 0} |
|
#image_upload{border-bottom-left-radius: 0px;border-bottom-right-radius: 0px} |
|
''' |
|
|
|
image_blocks = gr.Blocks(css=css, elem_id="total-container") |
|
with image_blocks as demo: |
|
with gr.Column(elem_id="col-container"): |
|
gr.Markdown("## BRIA Eraser") |
|
gr.HTML(''' |
|
<p style="margin-bottom: 10px; font-size: 94%"> |
|
This is a demo for |
|
<a href="https://huggingface.co/briaai/BRIA-2.3-ControlNet-Inpainting" target="_blank">BRIA 2.3 ControlNet Inpainting</a>. |
|
BRIA Eraser enables the ability to clear out and clean areas in an image or remove specific elements, while trained on licensed data, and so provide full legal liability coverage for copyright and privacy infringement. |
|
</p> |
|
''') |
|
with gr.Row(): |
|
with gr.Column(): |
|
image = gr.ImageEditor(sources=["upload"], layers=False, transforms=[], brush=gr.Brush(colors=["#000000"], color_mode="fixed")) |
|
with gr.Row(elem_id="prompt-container", equal_height=True): |
|
btn = gr.Button("Inpaint!", elem_id="run_button") |
|
|
|
with gr.Accordion(label="Advanced Settings", open=False): |
|
with gr.Row(equal_height=True): |
|
guidance_scale = gr.Number(value=1.2, minimum=0.0, maximum=2.5, step=0.1, label="guidance_scale") |
|
seed = gr.Number(value=123456, minimum=0, maximum=999999, step=1, label="seed") |
|
|
|
with gr.Column(): |
|
image_out = gr.Image(label="Output", elem_id="output-img", height=400) |
|
|
|
|
|
btn.click(fn=predict, inputs=[image, guidance_scale, seed], outputs=[image_out], api_name='run') |
|
|
|
|
|
gr.HTML( |
|
""" |
|
<div class="footer"> |
|
<p>Model by <a href="https://huggingface.co/diffusers" style="text-decoration: underline;" target="_blank">Diffusers</a> - Gradio Demo by 🤗 Hugging Face |
|
</p> |
|
</div> |
|
""" |
|
) |
|
|
|
image_blocks.queue(max_size=25,api_open=False).launch(show_api=False) |