Update app.py
Browse files
app.py
CHANGED
|
@@ -14,7 +14,7 @@ asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base",
|
|
| 14 |
# load text-to-speech checkpoint and speaker embeddings
|
| 15 |
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
| 16 |
|
| 17 |
-
model = SpeechT5ForTextToSpeech.from_pretrained("
|
| 18 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
| 19 |
|
| 20 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
|
@@ -22,7 +22,7 @@ speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze
|
|
| 22 |
|
| 23 |
|
| 24 |
def translate(audio):
|
| 25 |
-
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "
|
| 26 |
return outputs["text"]
|
| 27 |
|
| 28 |
|
|
|
|
| 14 |
# load text-to-speech checkpoint and speaker embeddings
|
| 15 |
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
| 16 |
|
| 17 |
+
model = SpeechT5ForTextToSpeech.from_pretrained("mmhamdy/speecht5-finetuned-fleurs-it-it").to(device)
|
| 18 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
| 19 |
|
| 20 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
|
|
|
| 22 |
|
| 23 |
|
| 24 |
def translate(audio):
|
| 25 |
+
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "it"})
|
| 26 |
return outputs["text"]
|
| 27 |
|
| 28 |
|