Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
-
import
|
2 |
from llama_cpp import Llama
|
3 |
-
import json
|
4 |
import os
|
|
|
5 |
import time
|
6 |
|
7 |
# Function to convert message history to prompt
|
@@ -9,8 +9,8 @@ def prompt_from_messages(messages):
|
|
9 |
prompt = ''
|
10 |
for message in messages:
|
11 |
prompt += f"<|start_header_id|>{message['role']}<|end_header_id|>\n\n"
|
12 |
-
prompt += f"{message['content']}<|eot_id|>
|
13 |
-
prompt = prompt[:-10]
|
14 |
return prompt
|
15 |
|
16 |
# Initialize the Llama model
|
@@ -21,54 +21,64 @@ llm = Llama.from_pretrained(
|
|
21 |
verbose=False
|
22 |
)
|
23 |
|
24 |
-
#
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
#
|
33 |
-
|
34 |
-
|
|
|
35 |
|
|
|
36 |
# Append user message
|
37 |
user_message = {'role': 'user', 'content': user_input}
|
38 |
-
messages.append(user_message)
|
39 |
|
40 |
# Prepare to get the response from Physics Master
|
|
|
|
|
|
|
41 |
full_response = ""
|
42 |
|
43 |
# Fetch response tokens and accumulate them
|
44 |
response = llm.create_chat_completion(
|
45 |
-
messages=messages,
|
46 |
stream=True
|
47 |
)
|
48 |
|
49 |
for chunk in response:
|
50 |
delta = chunk['choices'][0]['delta']
|
51 |
if 'role' in delta:
|
52 |
-
messages.append({'role': delta['role'], 'content': ''})
|
53 |
elif 'content' in delta:
|
54 |
token = delta['content']
|
55 |
# Accumulate tokens into the full response
|
56 |
full_response += token
|
57 |
|
58 |
# Once the full response is received, append it to the chat history
|
59 |
-
messages[-1]['content'] = full_response
|
60 |
-
|
61 |
-
# Return the entire chat history for display
|
62 |
-
return [(msg['role'], msg['content']) for msg in messages]
|
63 |
|
64 |
-
#
|
65 |
-
|
66 |
-
fn=chat_with_physics_master,
|
67 |
-
inputs=gr.inputs.Textbox(label="Ask a question"),
|
68 |
-
outputs=gr.outputs.Chatbox(label="Chat History"),
|
69 |
-
title="Physics Master Chatbot",
|
70 |
-
description="Ask **Physics Master** any physics-related question.",
|
71 |
-
)
|
72 |
|
73 |
-
#
|
74 |
-
|
|
|
|
1 |
+
import streamlit as st
|
2 |
from llama_cpp import Llama
|
|
|
3 |
import os
|
4 |
+
import json
|
5 |
import time
|
6 |
|
7 |
# Function to convert message history to prompt
|
|
|
9 |
prompt = ''
|
10 |
for message in messages:
|
11 |
prompt += f"<|start_header_id|>{message['role']}<|end_header_id|>\n\n"
|
12 |
+
prompt += f"{message['content']}<|eot_id|>"
|
13 |
+
prompt = prompt[:-10]
|
14 |
return prompt
|
15 |
|
16 |
# Initialize the Llama model
|
|
|
21 |
verbose=False
|
22 |
)
|
23 |
|
24 |
+
# Set up Streamlit App Layout
|
25 |
+
st.title("Physics Master Chatbot")
|
26 |
+
st.markdown("Ask **Physics Master** any physics-related question.")
|
27 |
+
|
28 |
+
# Initialize chat history in session state
|
29 |
+
if 'messages' not in st.session_state:
|
30 |
+
st.session_state.messages = [
|
31 |
+
{
|
32 |
+
'role': 'system',
|
33 |
+
'content': 'You are a professional physics master. Answer physics questions directly without using any external resources.'
|
34 |
+
}
|
35 |
+
]
|
36 |
+
st.session_state.chat_time = time.time()
|
37 |
+
|
38 |
+
# Display chat history
|
39 |
+
for message in st.session_state.messages:
|
40 |
+
if message['role'] == 'user':
|
41 |
+
st.write(f"**You:** {message['content']}")
|
42 |
+
else:
|
43 |
+
st.write(f"**Physics Master:** {message['content']}")
|
44 |
|
45 |
+
# Use a form to manage user input and submission
|
46 |
+
with st.form(key="input_form", clear_on_submit=True):
|
47 |
+
user_input = st.text_input("Ask a question", key="user_input")
|
48 |
+
submit_button = st.form_submit_button(label="Send")
|
49 |
|
50 |
+
if submit_button and user_input:
|
51 |
# Append user message
|
52 |
user_message = {'role': 'user', 'content': user_input}
|
53 |
+
st.session_state.messages.append(user_message)
|
54 |
|
55 |
# Prepare to get the response from Physics Master
|
56 |
+
st.write('Physics Master is thinking...')
|
57 |
+
|
58 |
+
# Initialize an empty string to accumulate the response
|
59 |
full_response = ""
|
60 |
|
61 |
# Fetch response tokens and accumulate them
|
62 |
response = llm.create_chat_completion(
|
63 |
+
messages=st.session_state.messages,
|
64 |
stream=True
|
65 |
)
|
66 |
|
67 |
for chunk in response:
|
68 |
delta = chunk['choices'][0]['delta']
|
69 |
if 'role' in delta:
|
70 |
+
st.session_state.messages.append({'role': delta['role'], 'content': ''})
|
71 |
elif 'content' in delta:
|
72 |
token = delta['content']
|
73 |
# Accumulate tokens into the full response
|
74 |
full_response += token
|
75 |
|
76 |
# Once the full response is received, append it to the chat history
|
77 |
+
st.session_state.messages[-1]['content'] = full_response
|
|
|
|
|
|
|
78 |
|
79 |
+
# Display the full response as a paragraph
|
80 |
+
st.write(f"**Physics Master:** {full_response}")
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
+
# Save the chat history to a JSON file
|
83 |
+
with open('chat_history.json', 'w', encoding='utf8') as file:
|
84 |
+
json.dump(st.session_state.messages, file, indent=4)
|