Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
-
import
|
| 2 |
from llama_cpp import Llama
|
| 3 |
-
import json
|
| 4 |
import os
|
|
|
|
| 5 |
import time
|
| 6 |
|
| 7 |
# Function to convert message history to prompt
|
|
@@ -9,8 +9,8 @@ def prompt_from_messages(messages):
|
|
| 9 |
prompt = ''
|
| 10 |
for message in messages:
|
| 11 |
prompt += f"<|start_header_id|>{message['role']}<|end_header_id|>\n\n"
|
| 12 |
-
prompt += f"{message['content']}<|eot_id|>
|
| 13 |
-
prompt = prompt[:-10]
|
| 14 |
return prompt
|
| 15 |
|
| 16 |
# Initialize the Llama model
|
|
@@ -21,54 +21,64 @@ llm = Llama.from_pretrained(
|
|
| 21 |
verbose=False
|
| 22 |
)
|
| 23 |
|
| 24 |
-
#
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
-
#
|
| 33 |
-
|
| 34 |
-
|
|
|
|
| 35 |
|
|
|
|
| 36 |
# Append user message
|
| 37 |
user_message = {'role': 'user', 'content': user_input}
|
| 38 |
-
messages.append(user_message)
|
| 39 |
|
| 40 |
# Prepare to get the response from Physics Master
|
|
|
|
|
|
|
|
|
|
| 41 |
full_response = ""
|
| 42 |
|
| 43 |
# Fetch response tokens and accumulate them
|
| 44 |
response = llm.create_chat_completion(
|
| 45 |
-
messages=messages,
|
| 46 |
stream=True
|
| 47 |
)
|
| 48 |
|
| 49 |
for chunk in response:
|
| 50 |
delta = chunk['choices'][0]['delta']
|
| 51 |
if 'role' in delta:
|
| 52 |
-
messages.append({'role': delta['role'], 'content': ''})
|
| 53 |
elif 'content' in delta:
|
| 54 |
token = delta['content']
|
| 55 |
# Accumulate tokens into the full response
|
| 56 |
full_response += token
|
| 57 |
|
| 58 |
# Once the full response is received, append it to the chat history
|
| 59 |
-
messages[-1]['content'] = full_response
|
| 60 |
-
|
| 61 |
-
# Return the entire chat history for display
|
| 62 |
-
return [(msg['role'], msg['content']) for msg in messages]
|
| 63 |
|
| 64 |
-
#
|
| 65 |
-
|
| 66 |
-
fn=chat_with_physics_master,
|
| 67 |
-
inputs=gr.inputs.Textbox(label="Ask a question"),
|
| 68 |
-
outputs=gr.outputs.Chatbox(label="Chat History"),
|
| 69 |
-
title="Physics Master Chatbot",
|
| 70 |
-
description="Ask **Physics Master** any physics-related question.",
|
| 71 |
-
)
|
| 72 |
|
| 73 |
-
#
|
| 74 |
-
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
from llama_cpp import Llama
|
|
|
|
| 3 |
import os
|
| 4 |
+
import json
|
| 5 |
import time
|
| 6 |
|
| 7 |
# Function to convert message history to prompt
|
|
|
|
| 9 |
prompt = ''
|
| 10 |
for message in messages:
|
| 11 |
prompt += f"<|start_header_id|>{message['role']}<|end_header_id|>\n\n"
|
| 12 |
+
prompt += f"{message['content']}<|eot_id|>"
|
| 13 |
+
prompt = prompt[:-10]
|
| 14 |
return prompt
|
| 15 |
|
| 16 |
# Initialize the Llama model
|
|
|
|
| 21 |
verbose=False
|
| 22 |
)
|
| 23 |
|
| 24 |
+
# Set up Streamlit App Layout
|
| 25 |
+
st.title("Physics Master Chatbot")
|
| 26 |
+
st.markdown("Ask **Physics Master** any physics-related question.")
|
| 27 |
+
|
| 28 |
+
# Initialize chat history in session state
|
| 29 |
+
if 'messages' not in st.session_state:
|
| 30 |
+
st.session_state.messages = [
|
| 31 |
+
{
|
| 32 |
+
'role': 'system',
|
| 33 |
+
'content': 'You are a professional physics master. Answer physics questions directly without using any external resources.'
|
| 34 |
+
}
|
| 35 |
+
]
|
| 36 |
+
st.session_state.chat_time = time.time()
|
| 37 |
+
|
| 38 |
+
# Display chat history
|
| 39 |
+
for message in st.session_state.messages:
|
| 40 |
+
if message['role'] == 'user':
|
| 41 |
+
st.write(f"**You:** {message['content']}")
|
| 42 |
+
else:
|
| 43 |
+
st.write(f"**Physics Master:** {message['content']}")
|
| 44 |
|
| 45 |
+
# Use a form to manage user input and submission
|
| 46 |
+
with st.form(key="input_form", clear_on_submit=True):
|
| 47 |
+
user_input = st.text_input("Ask a question", key="user_input")
|
| 48 |
+
submit_button = st.form_submit_button(label="Send")
|
| 49 |
|
| 50 |
+
if submit_button and user_input:
|
| 51 |
# Append user message
|
| 52 |
user_message = {'role': 'user', 'content': user_input}
|
| 53 |
+
st.session_state.messages.append(user_message)
|
| 54 |
|
| 55 |
# Prepare to get the response from Physics Master
|
| 56 |
+
st.write('Physics Master is thinking...')
|
| 57 |
+
|
| 58 |
+
# Initialize an empty string to accumulate the response
|
| 59 |
full_response = ""
|
| 60 |
|
| 61 |
# Fetch response tokens and accumulate them
|
| 62 |
response = llm.create_chat_completion(
|
| 63 |
+
messages=st.session_state.messages,
|
| 64 |
stream=True
|
| 65 |
)
|
| 66 |
|
| 67 |
for chunk in response:
|
| 68 |
delta = chunk['choices'][0]['delta']
|
| 69 |
if 'role' in delta:
|
| 70 |
+
st.session_state.messages.append({'role': delta['role'], 'content': ''})
|
| 71 |
elif 'content' in delta:
|
| 72 |
token = delta['content']
|
| 73 |
# Accumulate tokens into the full response
|
| 74 |
full_response += token
|
| 75 |
|
| 76 |
# Once the full response is received, append it to the chat history
|
| 77 |
+
st.session_state.messages[-1]['content'] = full_response
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
+
# Display the full response as a paragraph
|
| 80 |
+
st.write(f"**Physics Master:** {full_response}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
+
# Save the chat history to a JSON file
|
| 83 |
+
with open('chat_history.json', 'w', encoding='utf8') as file:
|
| 84 |
+
json.dump(st.session_state.messages, file, indent=4)
|