Spaces:
Sleeping
Sleeping
File size: 1,148 Bytes
860d63b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
import streamlit as st
from transformers import AutoModel, AutoTokenizer
import torch
# Title for your app
st.title("Llama-3-8B-Physics Master - Model Inference")
# Load the model and tokenizer from Hugging Face
@st.cache_resource
def load_model():
model = AutoModel.from_pretrained("gallen881/Llama-3-8B-Physics_Master-GGUF")
tokenizer = AutoTokenizer.from_pretrained("gallen881/Llama-3-8B-Physics_Master-GGUF")
return model, tokenizer
# Load the model once and store it in cache
model, tokenizer = load_model()
# Text input for the user
user_input = st.text_area("Enter your input here:")
if st.button("Generate Output"):
if user_input:
# Tokenize the input
inputs = tokenizer(user_input, return_tensors="pt")
# Forward pass through the model
with torch.no_grad():
outputs = model(**inputs)
# Get the output embeddings or logits (depending on the model structure)
# For example, let's say we want to display embeddings
st.write("Model Output Embeddings:", outputs.last_hidden_state)
else:
st.write("Please enter some input.")
|