import streamlit as st import pandas as pd from transformers import pipeline from sentence_transformers import SentenceTransformer, util semantic_model = SentenceTransformer('all-MiniLM-L6-v2') @st.cache(allow_output_mutation=True) def get_model(model): return pipeline("fill-mask", model=model, top_k=100)#set the maximum of tokens to be retrieved after each inference to model HISTORY_WEIGHT = 100 # set history weight (if found any keyword from history, it will priorities based on its weight) st.caption("This is a simple auto-completion where the next token is predicted per probability and a weigh if appears in user's history") history_keyword_text = st.text_input("Enter users's history keywords (optional, i.e., 'Gates')", value="") #history_keyword_text='' text = st.text_input("Enter a text for auto completion...", value='Where is Bill') #text='Where is Bill' semantic_text = st.text_input("Enter users's history semantic (optional, i.e., 'Microsoft or President')", value="Microsoft") #semantic_text='President' model = st.selectbox("choose a model", ["roberta-base", "bert-base-uncased"]) #model='roberta-base' nlp = get_model(model) #data_load_state = st.text('Loading model...') if text: # data_load_state = st.text('Inference to model...') result = nlp(text+' '+nlp.tokenizer.mask_token) # data_load_state.text('') sem_list=[_.strip() for _ in semantic_text.split(',')] if len(semantic_text): predicted_seq=[rec['sequence'] for rec in result] predicted_embeddings = semantic_model.encode(predicted_seq, convert_to_tensor=True) semantic_history_embeddings = semantic_model.encode(sem_list, convert_to_tensor=True) cosine_scores = util.cos_sim(predicted_embeddings, semantic_history_embeddings) for index, r in enumerate(result): if len(semantic_text): # for j_index in range(len(sem_list)): if len(r['token_str'])>2: #skip spcial chars such as "?" result[index]['score']+=float(sum(cosine_scores[index])) if r['token_str'].lower().strip() in history_keyword_text.lower().strip() and len(r['token_str'].lower().strip())>1: #found from history, then increase the score of tokens result[index]['score']*=HISTORY_WEIGHT #sort the results df=pd.DataFrame(result).sort_values(by='score', ascending=False) # show the results as a table st.table(df)