import streamlit as st from transformers import pipeline @st.cache(allow_output_mutation=True) def get_model(model): return pipeline("fill-mask", model=model, top_k=100) history_keyword_text = st.text_input("Enter users's history keywords (optional, i.e., 'Gates')", value="Gates") text = st.text_input("Enter a text for auto completion...", value='Where is Bill') model = st.selectbox("choose a model", ["roberta-base", "bert-base-uncased", "gpt2", "t5"]) data_load_state = st.text('Loading model...') nlp = get_model(model) if text: data_load_state = st.text('Inference to model...') result = nlp(text+' '+nlp.tokenizer.mask_token) data_load_state.text('') for index, r in enumerate(result): print(1) if r['sequence'].lower().strip() in history_keyword_text.lower().strip(): st.caption(r) result[index]['score']*=0.10 st.table(result)