import streamlit as st import pandas as pd from transformers import pipeline @st.cache(allow_output_mutation=True) def get_model(model): return pipeline("fill-mask", model=model, top_k=100) HISTORY_WEIGHT = 100 # set history weight (if found any keyword from history, it will priorities based on its weight) history_keyword_text = st.text_input("Enter users's history keywords (optional, i.e., 'Gates')", value="Gates") text = st.text_input("Enter a text for auto completion...", value='Where is Bill') model = st.selectbox("choose a model", ["roberta-base", "bert-base-uncased", "gpt2", "t5"]) data_load_state = st.text('Loading model...') nlp = get_model(model) if text: data_load_state = st.text('Inference to model...') result = nlp(text+' '+nlp.tokenizer.mask_token) data_load_state.text('') for index, r in enumerate(result): if r['token_str'].lower().strip() in history_keyword_text.lower().strip(): result[index]['score']*=HISTORY_WEIGHT df=pd.DataFrame(result).sort_values(by='score', ascending=False) #result={k: v for k, v in sorted(result.items(), key=lambda item: item[0])} st.table(df)