import streamlit as st import pandas as pd from transformers import pipeline from sentence_transformers import SentenceTransformer, util semantic_model = SentenceTransformer('all-MiniLM-L6-v2') @st.cache(allow_output_mutation=True) def get_model(model): return pipeline("fill-mask", model=model, top_k=100)#seto maximum of tokens to be retrieved after each inference to model HISTORY_WEIGHT = 100 # set history weight (if found any keyword from history, it will priorities based on its weight) st.caption("This is a simple auto-completion where the next token is predicted per probability and a weigh if appears in user's history") history_keyword_text = st.text_input("Enter users's history keywords (optional, i.e., 'Gates')", value="") text = st.text_input("Enter a text for auto completion...", value='Where is Bill') semantic_text = st.text_input("Enter users's history semantic (optional, i.e., 'Microsoft')", value="Microsoft") model = st.selectbox("choose a model", ["roberta-base", "bert-base-uncased"]) data_load_state = st.text('Loading model...') nlp = get_model(model) if text: data_load_state = st.text('Inference to model...') result = nlp(text+' '+nlp.tokenizer.mask_token) data_load_state.text('') predicted_embeddings = model.encode(result['sequence'], convert_to_tensor=True) semantic_history_embeddings = model.encode(semantic_text.spllit(','), convert_to_tensor=True) cosine_scores = util.cos_sim(embeddings1, embeddings2) for index, r in enumerate(result): result[index]['score']=cosine_scores[index][index] if r['token_str'].lower().strip() in history_keyword_text.lower().strip() and len(r['token_str'].lower().strip())>1: #found from history, then increase the score of tokens result[index]['score']*=HISTORY_WEIGHT #sort the results df=pd.DataFrame(result).sort_values(by='score', ascending=False) #show the results as a table st.table(df)