mbahrami's picture
Create app.py
da676c8
raw
history blame
618 Bytes
import streamlit as st
from transformers import pipeline
@st.cache(allow_output_mutation=True)
def get_model(model):
return pipeline("fill-mask", model=model)
text = st.text_input("Enter a text for auto completion...")
history_keyword_text = st.text_input("Users's history keyword split with ','")
model = st.selectbox("choose a model", ["roberta-base", "bert-base-uncased", "gpt2", "t5"])
if text:
data_load_state = st.text('Loading...')
nlp = get_model(model)
result = nlp(text+nlp.tokenizer.mask_token)
data_load_state.text('Loading data...done!')
# for c in result:
# del c["token"]
st.table(result)