Spaces:
Runtime error
Runtime error
import streamlit as st | |
import pandas as pd | |
from transformers import pipeline | |
from sentence_transformers import SentenceTransformer, util | |
semantic_model = SentenceTransformer('all-MiniLM-L6-v2') | |
def get_model(model): | |
return pipeline("fill-mask", model=model, top_k=100)#seto maximum of tokens to be retrieved after each inference to model | |
HISTORY_WEIGHT = 100 # set history weight (if found any keyword from history, it will priorities based on its weight) | |
st.caption("This is a simple auto-completion where the next token is predicted per probability and a weigh if appears in user's history") | |
history_keyword_text = st.text_input("Enter users's history keywords (optional, i.e., 'Gates')", value="") | |
text = st.text_input("Enter a text for auto completion...", value='Where is Bill') | |
semantic_text = st.text_input("Enter users's history semantic (optional, i.e., 'Microsoft')", value="Microsoft") | |
model = st.selectbox("choose a model", ["roberta-base", "bert-base-uncased"]) | |
data_load_state = st.text('Loading model...') | |
nlp = get_model(model) | |
if text: | |
data_load_state = st.text('Inference to model...') | |
result = nlp(text+' '+nlp.tokenizer.mask_token) | |
data_load_state.text('') | |
predicted_embeddings = model.encode(result['sequence'], convert_to_tensor=True) | |
semantic_history_embeddings = model.encode(semantic_text.spllit(','), convert_to_tensor=True) | |
cosine_scores = util.cos_sim(embeddings1, embeddings2) | |
for index, r in enumerate(result): | |
result[index]['score']=cosine_scores[index][index] | |
if r['token_str'].lower().strip() in history_keyword_text.lower().strip() and len(r['token_str'].lower().strip())>1: | |
#found from history, then increase the score of tokens | |
result[index]['score']*=HISTORY_WEIGHT | |
#sort the results | |
df=pd.DataFrame(result).sort_values(by='score', ascending=False) | |
#show the results as a table | |
st.table(df) |