Spaces:
Running
Running
File size: 2,868 Bytes
03300b3 4faa311 54b5699 4faa311 54b5699 50f7379 ee17529 3181180 ee17529 54c5e53 ee17529 54c5e53 ee17529 54c5e53 50f7379 4f89650 af347f8 ee17529 54c5e53 54b5699 54c5e53 54b5699 54c5e53 54b5699 54c5e53 54b5699 54c5e53 4f89650 54c5e53 ee17529 4f89650 ee17529 54c5e53 ee17529 4f89650 54c5e53 ee17529 54b5699 54c5e53 54b5699 54c5e53 54b5699 54c5e53 54b5699 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
---
title: README
emoji: π
colorFrom: green
colorTo: indigo
sdk: static
pinned: false
---
# MLX Community
A community org for [MLX](https://github.com/ml-explore/mlx) model weights that run on Apple Silicon. This organization hosts ready-to-use models compatible with:
- [mlx-examples](https://github.com/ml-explore/mlx-examples) βΒ a Python and CLI to run multiple types of models, including LLMs, image models, audio models, and more.
- [mlx-swift-examples](https://github.com/ml-explore/mlx-swift-examples) β a Swift package to run MLX models.
- [mlx-vlm](https://github.com/Blaizzy/mlx-vlm) β package for inference and fine-tuning of Vision Language Models (VLMs) using MLX.
These are pre-converted weights, ready to use in the example scripts or integrate in your apps.
# Quick start for LLMs
Install `mlx-lm`:
```
pip install mlx-lm
```
You can use `mlx-lm` from the command line. For example:
```
mlx_lm.generate --model mlx-community/Mistral-7B-Instruct-v0.3-4bit --prompt "hello"
```
This will download a Mistral 7B model from the Hugging Face Hub and generate
text using the given prompt.
To chat with an LLM use:
```bash
mlx_lm.chat
```
This will give you a chat REPL that you can use to interact with the LLM. The
chat context is preserved during the lifetime of the REPL.
For a full list of options run `--help` on the command of your interest, for example:
```
mlx_lm.chat --help
```
## Conversion and Quantization
To quantize a model from the command line run:
```
mlx_lm.convert --hf-path mistralai/Mistral-7B-Instruct-v0.3 -q
```
For more options run:
```
mlx_lm.convert --help
```
You can upload new models to Hugging Face by specifying `--upload-repo` to
`convert`. For example, to upload a quantized Mistral-7B model to the
[MLX Hugging Face community](https://huggingface.co/mlx-community) you can do:
```
mlx_lm.convert \
--hf-path mistralai/Mistral-7B-Instruct-v0.3 \
-q \
--upload-repo mlx-community/my-4bit-mistral
```
Models can also be converted and quantized directly in the
[mlx-my-repo](https://huggingface.co/spaces/mlx-community/mlx-my-repo) Hugging
Face Space.
For more details on the API checkout the full [README](https://github.com/ml-explore/mlx-examples/tree/main/llms)
### Other Examples:
For more examples, visit the [MLX Examples](https://github.com/ml-explore/mlx-examples) repo. The repo includes examples of:
- Image generation with Flux and Stable Diffusion
- Parameter efficient fine tuning with LoRA
- Speech recognition with Whisper
- Multimodal models such as CLIP or LLaVA
and many other examples of different machine learning applications and algorithms.
For comprehensive support of VLMs, check [mlx-vlm](https://github.com/Blaizzy/mlx-vlm), and to integrate MLX natively in your apps use [mlx-swift-examples](https://github.com/ml-explore/mlx-swift-examples). |