Junfeng5 commited on
Commit
5f70844
·
1 Parent(s): 40a9ab8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -9
app.py CHANGED
@@ -422,7 +422,7 @@ with gr.Blocks() as demo:
422
 
423
  img_input = gr.ImageEditor()
424
  model_select = gr.Dropdown(
425
- ["GLEE-Lite (R50)", "GLEE-Plus (SwinL)"], value = "GLEE-Lite (R50)" , multiselect=False, label="Model",
426
  )
427
  with gr.Row():
428
  with gr.Column():
@@ -444,7 +444,14 @@ with gr.Blocks() as demo:
444
  )
445
  # with gr.Column():
446
  with gr.Group():
447
-
 
 
 
 
 
 
 
448
  with gr.Accordion("Interactive segmentation usage",open=False):
449
  gr.Markdown(
450
  'For interactive segmentation:<br />\
@@ -452,13 +459,7 @@ with gr.Blocks() as demo:
452
  2.Point mode accepts a single point only; multiple points default to the centroid, so use boxes or scribbles for larger objects.<br />\
453
  3.After drawing, click green "√" on the right side of the image to preview the prompt visualization; the segmentation mask follows the chosen prompt colors.'
454
  )
455
- with gr.Accordion("Text based detection usage",open=False):
456
- gr.Markdown(
457
- 'GLEE supports three kind of object perception methods: category list, textual description, and class-agnostic.<br />\
458
- 1.Select an existing category list from the "Categories" dropdown, like COCO or OBJ365, or customize your own list.<br />\
459
- 2.Enter arbitrary object name in "Custom Category", or choose the expression model and describe the object in "Expression Textbox" for single object detection only.<br />\
460
- 3.For class-agnostic mode, choose "Class-Agnostic" from the "Categories" dropdown.'
461
- )
462
  img_showbox = gr.Image(label="visual prompt area preview")
463
 
464
 
 
422
 
423
  img_input = gr.ImageEditor()
424
  model_select = gr.Dropdown(
425
+ ["GLEE-Lite (R50)", "GLEE-Plus (SwinL)"], value = "GLEE-Plus (SwinL)" , multiselect=False, label="Model",
426
  )
427
  with gr.Row():
428
  with gr.Column():
 
444
  )
445
  # with gr.Column():
446
  with gr.Group():
447
+ with gr.Accordion("Text based detection usage",open=False):
448
+ gr.Markdown(
449
+ 'Press the "Detect & Segment" button directly to try the effect using the COCO category.<br />\
450
+ GLEE supports three kind of object perception methods: category list, textual description, and class-agnostic.<br />\
451
+ 1.Select an existing category list from the "Categories" dropdown, like COCO or OBJ365, or customize your own list.<br />\
452
+ 2.Enter arbitrary object name in "Custom Category", or choose the expression model and describe the object in "Expression Textbox" for single object detection only.<br />\
453
+ 3.For class-agnostic mode, choose "Class-Agnostic" from the "Categories" dropdown.'
454
+ )
455
  with gr.Accordion("Interactive segmentation usage",open=False):
456
  gr.Markdown(
457
  'For interactive segmentation:<br />\
 
459
  2.Point mode accepts a single point only; multiple points default to the centroid, so use boxes or scribbles for larger objects.<br />\
460
  3.After drawing, click green "√" on the right side of the image to preview the prompt visualization; the segmentation mask follows the chosen prompt colors.'
461
  )
462
+
 
 
 
 
 
 
463
  img_showbox = gr.Image(label="visual prompt area preview")
464
 
465