Update app.py
Browse files
app.py
CHANGED
@@ -157,7 +157,7 @@ def segment_image(img,prompt_mode, categoryname, custom_category, expressiong, r
|
|
157 |
if categoryname =="COCO-80":
|
158 |
batch_category_name = coco_class_name
|
159 |
elif categoryname =="OBJ365":
|
160 |
-
batch_category_name =
|
161 |
elif categoryname =="Custom-List":
|
162 |
batch_category_name = custom_category.split(',')
|
163 |
else:
|
@@ -450,7 +450,7 @@ with gr.Blocks() as demo:
|
|
450 |
'For interactive segmentation:<br />\
|
451 |
1.Draw points, boxes, or scribbles on the canvas for multiclass segmentation; use separate layers for different objects, adding layers with a "+" sign.<br />\
|
452 |
2.Point mode accepts a single point only; multiple points default to the centroid, so use boxes or scribbles for larger objects.<br />\
|
453 |
-
3.After drawing, click green "√" to preview the prompt visualization; the segmentation mask follows the chosen prompt colors.'
|
454 |
)
|
455 |
with gr.Accordion("Text based detection usage",open=False):
|
456 |
gr.Markdown(
|
@@ -470,7 +470,7 @@ with gr.Blocks() as demo:
|
|
470 |
results_select = gr.CheckboxGroup(["box", "mask", "name", "score", "expression"], value=["box", "mask", "name", "score"], label="Shown Results", info="The results shown on image")
|
471 |
num_inst_select = gr.Slider(1, 50, value=15, step=1, label="Num of topK instances for category based detection", info="Choose between 1 and 50 for better visualization")
|
472 |
threshold_select = gr.Slider(0, 1, value=0.2, label="Confidence Threshold", info="Choose threshold ")
|
473 |
-
mask_image_mix_ration = gr.Slider(0, 1, value=0.
|
474 |
|
475 |
|
476 |
|
|
|
157 |
if categoryname =="COCO-80":
|
158 |
batch_category_name = coco_class_name
|
159 |
elif categoryname =="OBJ365":
|
160 |
+
batch_category_name = OBJ365_class_names
|
161 |
elif categoryname =="Custom-List":
|
162 |
batch_category_name = custom_category.split(',')
|
163 |
else:
|
|
|
450 |
'For interactive segmentation:<br />\
|
451 |
1.Draw points, boxes, or scribbles on the canvas for multiclass segmentation; use separate layers for different objects, adding layers with a "+" sign.<br />\
|
452 |
2.Point mode accepts a single point only; multiple points default to the centroid, so use boxes or scribbles for larger objects.<br />\
|
453 |
+
3.After drawing, click green "√" on the right side of the image to preview the prompt visualization; the segmentation mask follows the chosen prompt colors.'
|
454 |
)
|
455 |
with gr.Accordion("Text based detection usage",open=False):
|
456 |
gr.Markdown(
|
|
|
470 |
results_select = gr.CheckboxGroup(["box", "mask", "name", "score", "expression"], value=["box", "mask", "name", "score"], label="Shown Results", info="The results shown on image")
|
471 |
num_inst_select = gr.Slider(1, 50, value=15, step=1, label="Num of topK instances for category based detection", info="Choose between 1 and 50 for better visualization")
|
472 |
threshold_select = gr.Slider(0, 1, value=0.2, label="Confidence Threshold", info="Choose threshold ")
|
473 |
+
mask_image_mix_ration = gr.Slider(0, 1, value=0.45, label="Image Brightness Ratio", info="Brightness between image and colored masks ")
|
474 |
|
475 |
|
476 |
|