|
|
|
|
|
|
|
|
|
|
|
|
|
import logging |
|
import numpy as np |
|
from typing import Callable, Dict, List, Optional, Tuple, Union |
|
import fvcore.nn.weight_init as weight_init |
|
|
|
import torch |
|
from torch import nn |
|
from torch.nn import functional as F |
|
from torch.nn.init import xavier_uniform_, constant_, uniform_, normal_ |
|
from torch.cuda.amp import autocast |
|
|
|
from detectron2.config import configurable |
|
from detectron2.layers import Conv2d, ShapeSpec, get_norm |
|
from detectron2.modeling import SEM_SEG_HEADS_REGISTRY |
|
|
|
from .position_encoding import PositionEmbeddingSine |
|
from ...utils.utils import _get_clones, _get_clones_advanced, _get_activation_fn |
|
from .ops.modules import MSDeformAttn |
|
from .early_fusion import VLFuse |
|
|
|
def build_pixel_decoder(cfg, input_shape): |
|
""" |
|
Build a pixel decoder from `cfg.MODEL.MaskDINO.PIXEL_DECODER_NAME`. |
|
""" |
|
name = cfg.MODEL.SEM_SEG_HEAD.PIXEL_DECODER_NAME |
|
model = SEM_SEG_HEADS_REGISTRY.get(name)(cfg, input_shape) |
|
forward_features = getattr(model, "forward_features", None) |
|
if not callable(forward_features): |
|
raise ValueError( |
|
"Only SEM_SEG_HEADS with forward_features method can be used as pixel decoder. " |
|
f"Please implement forward_features for {name} to only return mask features." |
|
) |
|
return model |
|
|
|
|
|
|
|
class MSDeformAttnTransformerEncoderOnly(nn.Module): |
|
def __init__(self, d_model=256, nhead=8, |
|
num_encoder_layers=6, dim_feedforward=1024, dropout=0.1, |
|
activation="relu", |
|
num_feature_levels=4, enc_n_points=4,): |
|
super().__init__() |
|
|
|
self.d_model = d_model |
|
self.nhead = nhead |
|
|
|
vl_fusion_layer = VLFuse() |
|
|
|
encoder_layer = MSDeformAttnTransformerEncoderLayer(d_model, dim_feedforward, |
|
dropout, activation, |
|
num_feature_levels, nhead, enc_n_points) |
|
self.encoder = MSDeformAttnTransformerEncoder(vl_fusion_layer, encoder_layer, num_encoder_layers) |
|
|
|
self.level_embed = nn.Parameter(torch.Tensor(num_feature_levels, d_model)) |
|
|
|
self._reset_parameters() |
|
|
|
def _reset_parameters(self): |
|
for p in self.parameters(): |
|
if p.dim() > 1: |
|
nn.init.xavier_uniform_(p) |
|
for m in self.modules(): |
|
if isinstance(m, MSDeformAttn): |
|
m._reset_parameters() |
|
normal_(self.level_embed) |
|
|
|
def get_valid_ratio(self, mask): |
|
_, H, W = mask.shape |
|
valid_H = torch.sum(~mask[:, :, 0], 1) |
|
valid_W = torch.sum(~mask[:, 0, :], 1) |
|
valid_ratio_h = valid_H.float() / H |
|
valid_ratio_w = valid_W.float() / W |
|
valid_ratio = torch.stack([valid_ratio_w, valid_ratio_h], -1) |
|
return valid_ratio |
|
|
|
def forward(self, srcs, masks, pos_embeds, early_fusion=None): |
|
|
|
enable_mask=0 |
|
if masks is not None: |
|
for src in srcs: |
|
if src.size(2)%32 or src.size(3)%32: |
|
enable_mask = 1 |
|
if enable_mask==0: |
|
masks = [torch.zeros((x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool) for x in srcs] |
|
|
|
src_flatten = [] |
|
mask_flatten = [] |
|
lvl_pos_embed_flatten = [] |
|
spatial_shapes = [] |
|
for lvl, (src, mask, pos_embed) in enumerate(zip(srcs, masks, pos_embeds)): |
|
bs, c, h, w = src.shape |
|
spatial_shape = (h, w) |
|
spatial_shapes.append(spatial_shape) |
|
src = src.flatten(2).transpose(1, 2) |
|
mask = mask.flatten(1) |
|
pos_embed = pos_embed.flatten(2).transpose(1, 2) |
|
lvl_pos_embed = pos_embed + self.level_embed[lvl].view(1, 1, -1) |
|
lvl_pos_embed_flatten.append(lvl_pos_embed) |
|
src_flatten.append(src) |
|
mask_flatten.append(mask) |
|
src_flatten = torch.cat(src_flatten, 1) |
|
mask_flatten = torch.cat(mask_flatten, 1) |
|
lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1) |
|
spatial_shapes = torch.as_tensor(spatial_shapes, dtype=torch.long, device=src_flatten.device) |
|
level_start_index = torch.cat((spatial_shapes.new_zeros((1, )), spatial_shapes.prod(1).cumsum(0)[:-1])) |
|
valid_ratios = torch.stack([self.get_valid_ratio(m) for m in masks], 1) |
|
|
|
memory, zero_loss = self.encoder(src_flatten, spatial_shapes, level_start_index, valid_ratios, lvl_pos_embed_flatten, mask_flatten, early_fusion) |
|
|
|
return memory, spatial_shapes, level_start_index, zero_loss |
|
|
|
|
|
class MSDeformAttnTransformerEncoderLayer(nn.Module): |
|
def __init__(self, |
|
d_model=256, d_ffn=1024, |
|
dropout=0.1, activation="relu", |
|
n_levels=4, n_heads=8, n_points=4): |
|
super().__init__() |
|
|
|
|
|
self.self_attn = MSDeformAttn(d_model, n_levels, n_heads, n_points) |
|
self.dropout1 = nn.Dropout(dropout) |
|
self.norm1 = nn.LayerNorm(d_model) |
|
|
|
|
|
self.linear1 = nn.Linear(d_model, d_ffn) |
|
self.activation = _get_activation_fn(activation) |
|
self.dropout2 = nn.Dropout(dropout) |
|
self.linear2 = nn.Linear(d_ffn, d_model) |
|
self.dropout3 = nn.Dropout(dropout) |
|
self.norm2 = nn.LayerNorm(d_model) |
|
|
|
@staticmethod |
|
def with_pos_embed(tensor, pos): |
|
return tensor if pos is None else tensor + pos |
|
|
|
def forward_ffn(self, src): |
|
src2 = self.linear2(self.dropout2(self.activation(self.linear1(src)))) |
|
src = src + self.dropout3(src2) |
|
src = self.norm2(src) |
|
return src |
|
|
|
def forward(self, src, pos, reference_points, spatial_shapes, level_start_index, padding_mask=None): |
|
|
|
src2 = self.self_attn(self.with_pos_embed(src, pos), reference_points, src, spatial_shapes, level_start_index, padding_mask) |
|
src = src + self.dropout1(src2) |
|
src = self.norm1(src) |
|
|
|
|
|
src = self.forward_ffn(src) |
|
|
|
return src |
|
|
|
|
|
class MSDeformAttnTransformerEncoder(nn.Module): |
|
def __init__(self, vl_fusion_layer, encoder_layer, num_layers): |
|
super().__init__() |
|
self.layers = _get_clones(encoder_layer, num_layers) |
|
self.num_layers = num_layers |
|
|
|
self.vl_layers = _get_clones_advanced(vl_fusion_layer, num_layers, 1) |
|
|
|
|
|
@staticmethod |
|
def get_reference_points(spatial_shapes, valid_ratios, device): |
|
reference_points_list = [] |
|
for lvl, (H_, W_) in enumerate(spatial_shapes): |
|
|
|
ref_y, ref_x = torch.meshgrid(torch.linspace(0.5, H_ - 0.5, H_, dtype=torch.float32, device=device), |
|
torch.linspace(0.5, W_ - 0.5, W_, dtype=torch.float32, device=device)) |
|
ref_y = ref_y.reshape(-1)[None] / (valid_ratios[:, None, lvl, 1] * H_) |
|
ref_x = ref_x.reshape(-1)[None] / (valid_ratios[:, None, lvl, 0] * W_) |
|
ref = torch.stack((ref_x, ref_y), -1) |
|
reference_points_list.append(ref) |
|
reference_points = torch.cat(reference_points_list, 1) |
|
reference_points = reference_points[:, :, None] * valid_ratios[:, None] |
|
return reference_points |
|
|
|
def forward(self, src, spatial_shapes, level_start_index, valid_ratios, pos=None, padding_mask=None, early_fusion=None): |
|
|
|
if early_fusion: |
|
output = {"visual": src, "lang": early_fusion} |
|
else: |
|
output = src |
|
|
|
reference_points = self.get_reference_points(spatial_shapes, valid_ratios, device=src.device) |
|
for _, (layer,vl_layer) in enumerate(zip(self.layers, self.vl_layers)): |
|
if early_fusion: |
|
output = vl_layer(output) |
|
output["visual"] = layer(output["visual"], pos, reference_points, spatial_shapes, level_start_index, padding_mask) |
|
else: |
|
output = layer(output, pos, reference_points, spatial_shapes, level_start_index, padding_mask) |
|
|
|
|
|
if early_fusion: |
|
return output["visual"] , (output['lang']['hidden']*0).sum() |
|
else: |
|
return output, None |
|
|
|
|
|
@SEM_SEG_HEADS_REGISTRY.register() |
|
class MaskDINOEncoder(nn.Module): |
|
""" |
|
This is the multi-scale encoder in detection models, also named as pixel decoder in segmentation models. |
|
""" |
|
@configurable |
|
def __init__( |
|
self, |
|
input_shape: Dict[str, ShapeSpec], |
|
*, |
|
transformer_dropout: float, |
|
transformer_nheads: int, |
|
transformer_dim_feedforward: int, |
|
transformer_enc_layers: int, |
|
conv_dim: int, |
|
mask_dim: int, |
|
norm: Optional[Union[str, Callable]] = None, |
|
|
|
transformer_in_features: List[str], |
|
common_stride: int, |
|
num_feature_levels: int, |
|
total_num_feature_levels: int, |
|
feature_order: str, |
|
ViTBackbone: bool, |
|
): |
|
""" |
|
NOTE: this interface is experimental. |
|
Args: |
|
input_shape: shapes (channels and stride) of the input features |
|
transformer_dropout: dropout probability in transformer |
|
transformer_nheads: number of heads in transformer |
|
transformer_dim_feedforward: dimension of feedforward network |
|
transformer_enc_layers: number of transformer encoder layers |
|
conv_dims: number of output channels for the intermediate conv layers. |
|
mask_dim: number of output channels for the final conv layer. |
|
norm (str or callable): normalization for all conv layers |
|
num_feature_levels: feature scales used |
|
total_num_feature_levels: total feautre scales used (include the downsampled features) |
|
feature_order: 'low2high' or 'high2low', i.e., 'low2high' means low-resolution features are put in the first. |
|
""" |
|
super().__init__() |
|
transformer_input_shape = { |
|
k: v for k, v in input_shape.items() if k in transformer_in_features |
|
} |
|
|
|
input_shape = sorted(input_shape.items(), key=lambda x: x[1].stride) |
|
self.in_features = [k for k, v in input_shape] |
|
self.feature_strides = [v.stride for k, v in input_shape] |
|
self.feature_channels = [v.channels for k, v in input_shape] |
|
self.feature_order = feature_order |
|
|
|
if feature_order == "low2high": |
|
transformer_input_shape = sorted(transformer_input_shape.items(), key=lambda x: -x[1].stride) |
|
else: |
|
transformer_input_shape = sorted(transformer_input_shape.items(), key=lambda x: x[1].stride) |
|
self.transformer_in_features = [k for k, v in transformer_input_shape] |
|
transformer_in_channels = [v.channels for k, v in transformer_input_shape] |
|
self.transformer_feature_strides = [v.stride for k, v in transformer_input_shape] |
|
self.maskdino_num_feature_levels = num_feature_levels |
|
self.total_num_feature_levels = total_num_feature_levels |
|
self.common_stride = common_stride |
|
|
|
self.transformer_num_feature_levels = len(self.transformer_in_features) |
|
self.low_resolution_index = transformer_in_channels.index(max(transformer_in_channels)) |
|
self.high_resolution_index = 0 if self.feature_order == 'low2high' else -1 |
|
|
|
self.isViTBackbone = ViTBackbone |
|
if not ViTBackbone: |
|
if self.transformer_num_feature_levels > 1: |
|
input_proj_list = [] |
|
for in_channels in transformer_in_channels[::-1]: |
|
input_proj_list.append(nn.Sequential( |
|
nn.Conv2d(in_channels, conv_dim, kernel_size=1), |
|
nn.GroupNorm(32, conv_dim), |
|
)) |
|
|
|
in_channels = max(transformer_in_channels) |
|
for _ in range(self.total_num_feature_levels - self.transformer_num_feature_levels): |
|
input_proj_list.append(nn.Sequential( |
|
nn.Conv2d(in_channels, conv_dim, kernel_size=3, stride=2, padding=1), |
|
nn.GroupNorm(32, conv_dim), |
|
)) |
|
in_channels = conv_dim |
|
self.input_proj = nn.ModuleList(input_proj_list) |
|
else: |
|
self.input_proj = nn.ModuleList([ |
|
nn.Sequential( |
|
nn.Conv2d(transformer_in_channels[-1], conv_dim, kernel_size=1), |
|
nn.GroupNorm(32, conv_dim), |
|
)]) |
|
|
|
for proj in self.input_proj: |
|
nn.init.xavier_uniform_(proj[0].weight, gain=1) |
|
nn.init.constant_(proj[0].bias, 0) |
|
|
|
self.transformer = MSDeformAttnTransformerEncoderOnly( |
|
d_model=conv_dim, |
|
dropout=transformer_dropout, |
|
nhead=transformer_nheads, |
|
dim_feedforward=transformer_dim_feedforward, |
|
num_encoder_layers=transformer_enc_layers, |
|
num_feature_levels=self.total_num_feature_levels, |
|
) |
|
N_steps = conv_dim // 2 |
|
self.pe_layer = PositionEmbeddingSine(N_steps, normalize=True) |
|
|
|
self.mask_dim = mask_dim |
|
|
|
self.mask_features = Conv2d( |
|
conv_dim, |
|
mask_dim, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
) |
|
weight_init.c2_xavier_fill(self.mask_features) |
|
|
|
stride = min(self.transformer_feature_strides) |
|
self.num_fpn_levels = max(int(np.log2(stride) - np.log2(self.common_stride)), 1) |
|
|
|
lateral_convs = [] |
|
output_convs = [] |
|
|
|
use_bias = norm == "" |
|
for idx, in_channels in enumerate(self.feature_channels[:self.num_fpn_levels]): |
|
lateral_norm = get_norm(norm, conv_dim) |
|
output_norm = get_norm(norm, conv_dim) |
|
|
|
lateral_conv = Conv2d( |
|
in_channels, conv_dim, kernel_size=1, bias=use_bias, norm=lateral_norm |
|
) |
|
output_conv = Conv2d( |
|
conv_dim, |
|
conv_dim, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
bias=use_bias, |
|
norm=output_norm, |
|
activation=F.relu, |
|
) |
|
weight_init.c2_xavier_fill(lateral_conv) |
|
weight_init.c2_xavier_fill(output_conv) |
|
self.add_module("adapter_{}".format(idx + 1), lateral_conv) |
|
self.add_module("layer_{}".format(idx + 1), output_conv) |
|
|
|
lateral_convs.append(lateral_conv) |
|
output_convs.append(output_conv) |
|
|
|
|
|
self.lateral_convs = lateral_convs[::-1] |
|
self.output_convs = output_convs[::-1] |
|
|
|
@classmethod |
|
def from_config(cls, cfg, input_shape: Dict[str, ShapeSpec]): |
|
ret = {} |
|
ret["input_shape"] = { |
|
k: v for k, v in input_shape.items() if k in cfg.MODEL.SEM_SEG_HEAD.IN_FEATURES |
|
} |
|
ret["conv_dim"] = cfg.MODEL.SEM_SEG_HEAD.CONVS_DIM |
|
ret["mask_dim"] = cfg.MODEL.SEM_SEG_HEAD.MASK_DIM |
|
ret["norm"] = cfg.MODEL.SEM_SEG_HEAD.NORM |
|
ret["transformer_dropout"] = cfg.MODEL.MaskDINO.DROPOUT |
|
ret["transformer_nheads"] = cfg.MODEL.MaskDINO.NHEADS |
|
ret["transformer_dim_feedforward"] = cfg.MODEL.SEM_SEG_HEAD.DIM_FEEDFORWARD |
|
ret[ |
|
"transformer_enc_layers" |
|
] = cfg.MODEL.SEM_SEG_HEAD.TRANSFORMER_ENC_LAYERS |
|
ret["transformer_in_features"] = cfg.MODEL.SEM_SEG_HEAD.DEFORMABLE_TRANSFORMER_ENCODER_IN_FEATURES |
|
ret["common_stride"] = cfg.MODEL.SEM_SEG_HEAD.COMMON_STRIDE |
|
ret["total_num_feature_levels"] = cfg.MODEL.SEM_SEG_HEAD.TOTAL_NUM_FEATURE_LEVELS |
|
ret["num_feature_levels"] = cfg.MODEL.SEM_SEG_HEAD.NUM_FEATURE_LEVELS |
|
ret["feature_order"] = cfg.MODEL.SEM_SEG_HEAD.FEATURE_ORDER |
|
ret["ViTBackbone"] = cfg.MODEL.BACKBONE.NAME in ['D2_EVA02', 'D2_EVA01' , 'D2_ViT'] |
|
return ret |
|
|
|
@autocast(enabled=False) |
|
def forward_features(self, features, masks, early_fusion=None): |
|
""" |
|
:param features: multi-scale features from the backbone |
|
:param masks: image mask |
|
:return: enhanced multi-scale features and mask feature (1/4 resolution) for the decoder to produce binary mask |
|
""" |
|
|
|
srcs = [] |
|
pos = [] |
|
|
|
srcsl = [] |
|
posl = [] |
|
|
|
if self.isViTBackbone: |
|
for idx, f in enumerate(self.transformer_in_features[::-1]): |
|
x = features[f].float() |
|
srcs.append(x) |
|
pos.append(self.pe_layer(x)) |
|
if self.feature_order != 'low2high': |
|
srcs = srcs[::-1] |
|
pos = pos[::-1] |
|
else: |
|
if self.total_num_feature_levels > self.transformer_num_feature_levels: |
|
smallest_feat = features[self.transformer_in_features[self.low_resolution_index]].float() |
|
_len_srcs = self.transformer_num_feature_levels |
|
for l in range(_len_srcs, self.total_num_feature_levels): |
|
if l == _len_srcs: |
|
src = self.input_proj[l](smallest_feat) |
|
else: |
|
src = self.input_proj[l](srcsl[-1]) |
|
srcsl.append(src) |
|
posl.append(self.pe_layer(src)) |
|
srcsl = srcsl[::-1] |
|
|
|
|
|
|
|
for idx, f in enumerate(self.transformer_in_features[::-1]): |
|
x = features[f].float() |
|
srcs.append(self.input_proj[idx](x)) |
|
pos.append(self.pe_layer(x)) |
|
srcs.extend(srcsl) if self.feature_order == 'low2high' else srcsl.extend(srcs) |
|
pos.extend(posl) if self.feature_order == 'low2high' else posl.extend(pos) |
|
if self.feature_order != 'low2high': |
|
srcs = srcsl |
|
pos = posl |
|
|
|
y, spatial_shapes, level_start_index, zero_loss = self.transformer(srcs, masks, pos, early_fusion) |
|
bs = y.shape[0] |
|
|
|
split_size_or_sections = [None] * self.total_num_feature_levels |
|
for i in range(self.total_num_feature_levels): |
|
if i < self.total_num_feature_levels - 1: |
|
split_size_or_sections[i] = level_start_index[i + 1] - level_start_index[i] |
|
else: |
|
split_size_or_sections[i] = y.shape[1] - level_start_index[i] |
|
y = torch.split(y, split_size_or_sections, dim=1) |
|
|
|
out = [] |
|
multi_scale_features = [] |
|
num_cur_levels = 0 |
|
for i, z in enumerate(y): |
|
out.append(z.transpose(1, 2).view(bs, -1, spatial_shapes[i][0], spatial_shapes[i][1])) |
|
|
|
|
|
|
|
for idx, f in enumerate(self.in_features[:self.num_fpn_levels][::-1]): |
|
x = features[f].float() |
|
lateral_conv = self.lateral_convs[idx] |
|
output_conv = self.output_convs[idx] |
|
cur_fpn = lateral_conv(x) |
|
|
|
y = cur_fpn + F.interpolate(out[self.high_resolution_index], size=cur_fpn.shape[-2:], mode="bilinear", align_corners=False) |
|
y = output_conv(y) |
|
out.append(y) |
|
for o in out: |
|
if num_cur_levels < self.total_num_feature_levels: |
|
multi_scale_features.append(o) |
|
num_cur_levels += 1 |
|
return self.mask_features(out[-1]), out[0], multi_scale_features, zero_loss |
|
|
|
|