|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
from timm.models.layers import DropPath |
|
|
|
|
|
|
|
|
|
class VLFuse(torch.nn.Module): |
|
""" |
|
Early Fusion Module |
|
""" |
|
|
|
def __init__(self, ): |
|
super(VLFuse, self).__init__() |
|
self.init_configs() |
|
|
|
|
|
|
|
self.b_attn = BiAttentionBlockForCheckpoint(v_dim=self.img_dim, |
|
l_dim=self.lang_dim, |
|
embed_dim=self.embed_dim, |
|
num_heads=self.n_head, |
|
dropout=0.1, |
|
drop_path=.0, |
|
init_values=1.0 / 6, |
|
) |
|
def init_configs(self, ): |
|
|
|
self.img_dim = 256 |
|
|
|
self.max_query_len = 256 |
|
self.n_layers =1 |
|
|
|
|
|
self.n_head = 8 |
|
self.embed_dim = 2048 |
|
|
|
self.lang_dim = 256 |
|
|
|
def forward(self, x, task=None): |
|
visual_features = x["visual"] |
|
language_dict_features = x["lang"] |
|
|
|
fused_visual_features, language_features = self.b_attn( |
|
visual_features, language_dict_features['hidden'], language_dict_features['masks'], task) |
|
|
|
language_dict_features['hidden'] = language_features |
|
fused_language_dict_features = language_dict_features |
|
|
|
features_dict = {"visual": fused_visual_features, |
|
"lang": fused_language_dict_features} |
|
|
|
return features_dict |
|
|
|
|
|
class BiMultiHeadAttention(nn.Module): |
|
def __init__(self, v_dim, l_dim, embed_dim, num_heads, dropout=0.1): |
|
super(BiMultiHeadAttention, self).__init__() |
|
|
|
self.embed_dim = embed_dim |
|
self.num_heads = num_heads |
|
self.head_dim = embed_dim // num_heads |
|
self.v_dim = v_dim |
|
self.l_dim = l_dim |
|
|
|
assert ( |
|
self.head_dim * self.num_heads == self.embed_dim |
|
), f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`: {self.num_heads})." |
|
self.scale = self.head_dim ** (-0.5) |
|
self.dropout = dropout |
|
|
|
self.v_proj = nn.Linear(self.v_dim, self.embed_dim) |
|
self.l_proj = nn.Linear(self.l_dim, self.embed_dim) |
|
self.values_v_proj = nn.Linear(self.v_dim, self.embed_dim) |
|
self.values_l_proj = nn.Linear(self.l_dim, self.embed_dim) |
|
|
|
self.out_v_proj = nn.Linear(self.embed_dim, self.v_dim) |
|
self.out_l_proj = nn.Linear(self.embed_dim, self.l_dim) |
|
|
|
self.stable_softmax_2d = False |
|
self.clamp_min_for_underflow = True |
|
self.clamp_max_for_overflow = True |
|
|
|
self._reset_parameters() |
|
|
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): |
|
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() |
|
|
|
def _reset_parameters(self): |
|
nn.init.xavier_uniform_(self.v_proj.weight) |
|
self.v_proj.bias.data.fill_(0) |
|
nn.init.xavier_uniform_(self.l_proj.weight) |
|
self.l_proj.bias.data.fill_(0) |
|
nn.init.xavier_uniform_(self.values_v_proj.weight) |
|
self.values_v_proj.bias.data.fill_(0) |
|
nn.init.xavier_uniform_(self.values_l_proj.weight) |
|
self.values_l_proj.bias.data.fill_(0) |
|
nn.init.xavier_uniform_(self.out_v_proj.weight) |
|
self.out_v_proj.bias.data.fill_(0) |
|
nn.init.xavier_uniform_(self.out_l_proj.weight) |
|
self.out_l_proj.bias.data.fill_(0) |
|
|
|
def forward(self, v, l, attention_mask_l=None): |
|
bsz, tgt_len, embed_dim = v.size() |
|
|
|
query_states = self.v_proj(v) * self.scale |
|
key_states = self._shape(self.l_proj(l), -1, bsz) |
|
value_v_states = self._shape(self.values_v_proj(v), -1, bsz) |
|
value_l_states = self._shape(self.values_l_proj(l), -1, bsz) |
|
|
|
proj_shape = (bsz * self.num_heads, -1, self.head_dim) |
|
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) |
|
key_states = key_states.view(*proj_shape) |
|
value_v_states = value_v_states.view(*proj_shape) |
|
value_l_states = value_l_states.view(*proj_shape) |
|
|
|
src_len = key_states.size(1) |
|
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) |
|
|
|
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): |
|
raise ValueError( |
|
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is {attn_weights.size()}" |
|
) |
|
|
|
|
|
|
|
if self.stable_softmax_2d: |
|
attn_weights = attn_weights - attn_weights.max() |
|
|
|
if self.clamp_min_for_underflow: |
|
attn_weights = torch.clamp(attn_weights, min=-50000) |
|
if self.clamp_max_for_overflow: |
|
attn_weights = torch.clamp(attn_weights, max=50000) |
|
|
|
attn_weights_T = attn_weights.transpose(1, 2) |
|
attn_weights_l = (attn_weights_T - torch.max(attn_weights_T, dim=-1, keepdim=True)[ |
|
0]) |
|
if self.clamp_min_for_underflow: |
|
attn_weights_l = torch.clamp(attn_weights_l, min=-50000) |
|
if self.clamp_max_for_overflow: |
|
attn_weights_l = torch.clamp(attn_weights_l, max=50000) |
|
|
|
attn_weights_l = attn_weights_l.softmax(dim=-1) |
|
|
|
if attention_mask_l is not None: |
|
assert (attention_mask_l.dim() == 2) |
|
attention_mask = attention_mask_l.unsqueeze(1).unsqueeze(1) |
|
attention_mask = attention_mask.expand(bsz, 1, tgt_len, src_len) |
|
attention_mask = attention_mask.masked_fill(attention_mask == 0, -9e15) |
|
|
|
if attention_mask.size() != (bsz, 1, tgt_len, src_len): |
|
raise ValueError( |
|
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}" |
|
) |
|
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask |
|
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) |
|
|
|
attn_weights_v = nn.functional.softmax(attn_weights, dim=-1) |
|
|
|
attn_probs_v = F.dropout(attn_weights_v, p=self.dropout, training=self.training) |
|
attn_probs_l = F.dropout(attn_weights_l, p=self.dropout, training=self.training) |
|
|
|
attn_output_v = torch.bmm(attn_probs_v, value_l_states) |
|
attn_output_l = torch.bmm(attn_probs_l, value_v_states) |
|
|
|
|
|
if attn_output_v.size() != (bsz * self.num_heads, tgt_len, self.head_dim): |
|
raise ValueError( |
|
f"`attn_output_v` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is {attn_output_v.size()}" |
|
) |
|
|
|
if attn_output_l.size() != (bsz * self.num_heads, src_len, self.head_dim): |
|
raise ValueError( |
|
f"`attn_output_l` should be of size {(bsz, self.num_heads, src_len, self.head_dim)}, but is {attn_output_l.size()}" |
|
) |
|
|
|
attn_output_v = attn_output_v.view(bsz, self.num_heads, tgt_len, self.head_dim) |
|
attn_output_v = attn_output_v.transpose(1, 2) |
|
attn_output_v = attn_output_v.reshape(bsz, tgt_len, self.embed_dim) |
|
|
|
attn_output_l = attn_output_l.view(bsz, self.num_heads, src_len, self.head_dim) |
|
attn_output_l = attn_output_l.transpose(1, 2) |
|
attn_output_l = attn_output_l.reshape(bsz, src_len, self.embed_dim) |
|
|
|
attn_output_v = self.out_v_proj(attn_output_v) |
|
attn_output_l = self.out_l_proj(attn_output_l) |
|
|
|
return attn_output_v, attn_output_l |
|
|
|
|
|
class BiAttentionBlockForCheckpoint(nn.Module): |
|
def __init__(self, v_dim, l_dim, embed_dim, num_heads, dropout=0.1, |
|
drop_path=.0, init_values=1e-4, ): |
|
""" |
|
Inputs: |
|
embed_dim - Dimensionality of input and attention feature vectors |
|
num_heads - Number of heads to use in the Multi-Head Attention block |
|
dropout - Amount of dropout to apply in the feed-forward network |
|
""" |
|
super(BiAttentionBlockForCheckpoint, self).__init__() |
|
|
|
|
|
self.layer_norm_v = nn.LayerNorm(v_dim) |
|
self.layer_norm_l = nn.LayerNorm(l_dim) |
|
self.attn = BiMultiHeadAttention(v_dim=v_dim, |
|
l_dim=l_dim, |
|
embed_dim=embed_dim, |
|
num_heads=num_heads, |
|
dropout=dropout, |
|
) |
|
|
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
self.gamma_v = nn.Parameter(init_values * torch.ones((v_dim)), requires_grad=True) |
|
self.gamma_l = nn.Parameter(init_values * torch.ones((l_dim)), requires_grad=True) |
|
|
|
|
|
def forward(self, v, l, attention_mask_l=None, task=None): |
|
|
|
|
|
v = self.layer_norm_v(v) |
|
l = self.layer_norm_l(l) |
|
delta_v, delta_l = self.attn(v, l, attention_mask_l=attention_mask_l) |
|
|
|
v = v + self.drop_path(self.gamma_v * delta_v) |
|
l = l + self.drop_path(self.gamma_l * delta_l) |
|
return v, l |
|
|
|
|
|
|