Spaces:
Paused
Paused
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,348 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import time
|
3 |
+
import random
|
4 |
+
import yaml
|
5 |
+
import subprocess
|
6 |
+
|
7 |
+
import runpod
|
8 |
+
# import gradio as gr
|
9 |
+
import pandas as pd
|
10 |
+
from jinja2 import Template
|
11 |
+
from huggingface_hub import ModelCard, ModelCardData, HfApi, repo_info
|
12 |
+
from huggingface_hub.utils import RepositoryNotFoundError
|
13 |
+
|
14 |
+
# Set environment variables
|
15 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
16 |
+
runpod.api_key = os.environ.get("RUNPOD_TOKEN")
|
17 |
+
|
18 |
+
# Parameters
|
19 |
+
USERNAME = 'automerger'
|
20 |
+
N_ROWS = 20
|
21 |
+
WAIT_TIME = 3600
|
22 |
+
|
23 |
+
|
24 |
+
def create_dataset() -> bool:
|
25 |
+
"""
|
26 |
+
Use Scrape Open LLM Leaderboard to create a CSV dataset.
|
27 |
+
"""
|
28 |
+
command = ["python3", "scrape-open-llm-leaderboard/main.py", "-csv"]
|
29 |
+
|
30 |
+
try:
|
31 |
+
result = subprocess.run(command, check=True, stdout=subprocess.PIPE,
|
32 |
+
stderr=subprocess.PIPE, text=True)
|
33 |
+
print(f"scrape-open-llm-leaderboard: {result.stdout}")
|
34 |
+
return True
|
35 |
+
except subprocess.CalledProcessError as e:
|
36 |
+
print(f"scrape-open-llm-leaderboard: {e.stderr}")
|
37 |
+
return False
|
38 |
+
|
39 |
+
|
40 |
+
def merge_models() -> None:
|
41 |
+
"""
|
42 |
+
Use mergekit to create a merge.
|
43 |
+
"""
|
44 |
+
command = ["mergekit-yaml", "config.yaml", "merge", "--copy-tokenizer"]
|
45 |
+
|
46 |
+
try:
|
47 |
+
result = subprocess.run(command, check=True, stdout=subprocess.PIPE,
|
48 |
+
stderr=subprocess.PIPE, text=True)
|
49 |
+
print(f"mergekit: {result.stdout}")
|
50 |
+
except subprocess.CalledProcessError as e:
|
51 |
+
print(f"mergekit: {e.stderr}")
|
52 |
+
|
53 |
+
|
54 |
+
def make_df(file_path: str, n_rows: int) -> pd.DataFrame:
|
55 |
+
"""
|
56 |
+
Create a filtered dataset from the Open LLM Leaderboard.
|
57 |
+
"""
|
58 |
+
columns = ["Available on the hub", "Model sha", "T", "Type", "Precision",
|
59 |
+
"Architecture", "Weight type", "Hub ❤️", "Flagged", "MoE"]
|
60 |
+
ds = pd.read_csv(file_path)
|
61 |
+
df = (
|
62 |
+
ds[
|
63 |
+
(ds["#Params (B)"] == 7.24) &
|
64 |
+
(ds["Available on the hub"] == True) &
|
65 |
+
(ds["Flagged"] == False) &
|
66 |
+
(ds["MoE"] == False) &
|
67 |
+
(ds["Weight type"] == "Original")
|
68 |
+
]
|
69 |
+
.drop(columns=columns)
|
70 |
+
.drop_duplicates(subset=["Model"])
|
71 |
+
.iloc[:n_rows]
|
72 |
+
)
|
73 |
+
return df
|
74 |
+
|
75 |
+
|
76 |
+
def repo_exists(repo_id: str) -> bool:
|
77 |
+
try:
|
78 |
+
repo_info(repo_id)
|
79 |
+
return True
|
80 |
+
except RepositoryNotFoundError:
|
81 |
+
return False
|
82 |
+
|
83 |
+
|
84 |
+
def get_name(models: list[pd.Series], username: str, version=0) -> str:
|
85 |
+
model_name = models[0]["Model"].split("/")[-1].split("-")[0].capitalize() \
|
86 |
+
+ models[1]["Model"].split("/")[-1].split("-")[0].capitalize() \
|
87 |
+
+ "-7B"
|
88 |
+
if version > 0:
|
89 |
+
model_name = model_name.split("-")[0] + f"-v{version}-7B"
|
90 |
+
|
91 |
+
if repo_exists(f"{username}/{model_name}"):
|
92 |
+
get_name(models, username, version+1)
|
93 |
+
|
94 |
+
return model_name
|
95 |
+
|
96 |
+
|
97 |
+
def get_license(models: list[pd.Series]) -> str:
|
98 |
+
license1 = models[0]["Hub License"]
|
99 |
+
license2 = models[1]["Hub License"]
|
100 |
+
license = "cc-by-nc-4.0"
|
101 |
+
|
102 |
+
if license1 == "cc-by-nc-4.0" or license2 == "cc-by-nc-4.0":
|
103 |
+
license = "cc-by-nc-4.0"
|
104 |
+
elif license1 == "apache-2.0" or license2 == "apache-2.0":
|
105 |
+
license = "apache-2.0"
|
106 |
+
elif license1 == "MIT" and license2 == "MIT":
|
107 |
+
license = "MIT"
|
108 |
+
return license
|
109 |
+
|
110 |
+
|
111 |
+
def create_config(models: list[pd.Series]) -> str:
|
112 |
+
slerp_config = f"""
|
113 |
+
slices:
|
114 |
+
- sources:
|
115 |
+
- model: {models[0]["Model"]}
|
116 |
+
layer_range: [0, 32]
|
117 |
+
- model: {models[1]["Model"]}
|
118 |
+
layer_range: [0, 32]
|
119 |
+
merge_method: slerp
|
120 |
+
base_model: {models[0]["Model"]}
|
121 |
+
parameters:
|
122 |
+
t:
|
123 |
+
- filter: self_attn
|
124 |
+
value: [0, 0.5, 0.3, 0.7, 1]
|
125 |
+
- filter: mlp
|
126 |
+
value: [1, 0.5, 0.7, 0.3, 0]
|
127 |
+
- value: 0.5
|
128 |
+
dtype: bfloat16
|
129 |
+
random_seed: 0
|
130 |
+
"""
|
131 |
+
dare_config = f"""
|
132 |
+
models:
|
133 |
+
- model: {models[0]["Model"]}
|
134 |
+
# No parameters necessary for base model
|
135 |
+
- model: {models[1]["Model"]}
|
136 |
+
parameters:
|
137 |
+
density: 0.53
|
138 |
+
weight: 0.6
|
139 |
+
merge_method: dare_ties
|
140 |
+
base_model: {models[0]["Model"]}
|
141 |
+
parameters:
|
142 |
+
int8_mask: true
|
143 |
+
dtype: bfloat16
|
144 |
+
random_seed: 0
|
145 |
+
"""
|
146 |
+
yaml_config = random.choices([slerp_config, dare_config], weights=[0.4, 0.6], k=1)[0]
|
147 |
+
|
148 |
+
with open('config.yaml', 'w', encoding="utf-8") as f:
|
149 |
+
f.write(yaml_config)
|
150 |
+
|
151 |
+
return yaml_config
|
152 |
+
|
153 |
+
|
154 |
+
def create_model_card(yaml_config: str, model_name: str, username: str, license: str) -> None:
|
155 |
+
template_text = """
|
156 |
+
---
|
157 |
+
license: {{ license }}
|
158 |
+
base_model:
|
159 |
+
{%- for model in models %}
|
160 |
+
- {{ model }}
|
161 |
+
{%- endfor %}
|
162 |
+
tags:
|
163 |
+
- merge
|
164 |
+
- mergekit
|
165 |
+
- lazymergekit
|
166 |
+
---
|
167 |
+
|
168 |
+
# {{ model_name }}
|
169 |
+
|
170 |
+
{{ model_name }} is an automated merge created by [Maxime Labonne](https://huggingface.co/mlabonne) using the following configuration.
|
171 |
+
|
172 |
+
{%- for model in models %}
|
173 |
+
* [{{ model }}](https://huggingface.co/{{ model }})
|
174 |
+
{%- endfor %}
|
175 |
+
|
176 |
+
## 🧩 Configuration
|
177 |
+
|
178 |
+
```yaml
|
179 |
+
{{- yaml_config -}}
|
180 |
+
```
|
181 |
+
|
182 |
+
## 💻 Usage
|
183 |
+
|
184 |
+
```python
|
185 |
+
!pip install -qU transformers accelerate
|
186 |
+
|
187 |
+
from transformers import AutoTokenizer
|
188 |
+
import transformers
|
189 |
+
import torch
|
190 |
+
|
191 |
+
model = "{{ username }}/{{ model_name }}"
|
192 |
+
messages = [{"role": "user", "content": "What is a large language model?"}]
|
193 |
+
|
194 |
+
tokenizer = AutoTokenizer.from_pretrained(model)
|
195 |
+
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
196 |
+
pipeline = transformers.pipeline(
|
197 |
+
"text-generation",
|
198 |
+
model=model,
|
199 |
+
torch_dtype=torch.float16,
|
200 |
+
device_map="auto",
|
201 |
+
)
|
202 |
+
|
203 |
+
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
|
204 |
+
print(outputs[0]["generated_text"])
|
205 |
+
```
|
206 |
+
"""
|
207 |
+
|
208 |
+
# Create a Jinja template object
|
209 |
+
jinja_template = Template(template_text.strip())
|
210 |
+
|
211 |
+
# Get list of models from config
|
212 |
+
data = yaml.safe_load(yaml_config)
|
213 |
+
if "models" in data:
|
214 |
+
models = [data["models"][i]["model"] for i in range(len(data["models"])) if "parameters" in data["models"][i]]
|
215 |
+
elif "parameters" in data:
|
216 |
+
models = [data["slices"][0]["sources"][i]["model"] for i in range(len(data["slices"][0]["sources"]))]
|
217 |
+
elif "slices" in data:
|
218 |
+
models = [data["slices"][i]["sources"][0]["model"] for i in range(len(data["slices"]))]
|
219 |
+
else:
|
220 |
+
raise Exception("No models or slices found in yaml config")
|
221 |
+
|
222 |
+
# Fill the template
|
223 |
+
content = jinja_template.render(
|
224 |
+
model_name=model_name,
|
225 |
+
models=models,
|
226 |
+
yaml_config=yaml_config,
|
227 |
+
username=username,
|
228 |
+
license=license
|
229 |
+
)
|
230 |
+
|
231 |
+
# Save the model card
|
232 |
+
card = ModelCard(content)
|
233 |
+
card.save('merge/README.md')
|
234 |
+
|
235 |
+
|
236 |
+
def upload_model(api: HfApi, username: str, model_name: str) -> None:
|
237 |
+
api.create_repo(
|
238 |
+
repo_id=f"{username}/{model_name}",
|
239 |
+
repo_type="model",
|
240 |
+
exist_ok=True,
|
241 |
+
)
|
242 |
+
api.upload_folder(
|
243 |
+
repo_id=f"{username}/{model_name}",
|
244 |
+
folder_path="merge",
|
245 |
+
)
|
246 |
+
|
247 |
+
|
248 |
+
def create_pod(model_name: str, username: str, n=10, wait_seconds=10):
|
249 |
+
for attempt in range(n):
|
250 |
+
try:
|
251 |
+
pod = runpod.create_pod(
|
252 |
+
name=f"Automerge {model_name} on Nous",
|
253 |
+
image_name="runpod/pytorch:2.0.1-py3.10-cuda11.8.0-devel-ubuntu22.04",
|
254 |
+
gpu_type_id="NVIDIA GeForce RTX 3090",
|
255 |
+
cloud_type="COMMUNITY",
|
256 |
+
gpu_count=1,
|
257 |
+
volume_in_gb=0,
|
258 |
+
container_disk_in_gb=50,
|
259 |
+
template_id="au6nz6emhk",
|
260 |
+
env={
|
261 |
+
"BENCHMARK": "nous",
|
262 |
+
"MODEL_ID": f"{username}/{model_name}",
|
263 |
+
"REPO": "https://github.com/mlabonne/llm-autoeval.git",
|
264 |
+
"TRUST_REMOTE_CODE": False,
|
265 |
+
"DEBUG": False,
|
266 |
+
"GITHUB_API_TOKEN": os.environ["GITHUB_TOKEN"],
|
267 |
+
}
|
268 |
+
)
|
269 |
+
print("Pod creation succeeded.")
|
270 |
+
return pod
|
271 |
+
except Exception as e:
|
272 |
+
print(f"Attempt {attempt + 1} failed with error: {e}")
|
273 |
+
if attempt < n - 1:
|
274 |
+
print(f"Waiting {wait_seconds} seconds before retrying...")
|
275 |
+
time.sleep(wait_seconds)
|
276 |
+
else:
|
277 |
+
print("All attempts failed. Giving up.")
|
278 |
+
raise
|
279 |
+
|
280 |
+
def merge_loop():
|
281 |
+
# Start HF API
|
282 |
+
api = HfApi(token=HF_TOKEN)
|
283 |
+
|
284 |
+
# Create dataset (proceed only if successful)
|
285 |
+
if not create_dataset():
|
286 |
+
print("Failed to create dataset. Skipping merge loop.")
|
287 |
+
return
|
288 |
+
|
289 |
+
df = make_df("open-llm-leaderboard.csv", N_ROWS)
|
290 |
+
|
291 |
+
# Sample two models
|
292 |
+
sample = df.sample(n=2)
|
293 |
+
models = [sample.iloc[i] for i in range(2)]
|
294 |
+
|
295 |
+
# Get model name
|
296 |
+
model_name = get_name(models, USERNAME, version=0)
|
297 |
+
print(model_name)
|
298 |
+
|
299 |
+
# Get model license
|
300 |
+
license = get_license(models)
|
301 |
+
print(license)
|
302 |
+
|
303 |
+
# Merge configs
|
304 |
+
yaml_config = create_config(models)
|
305 |
+
print(yaml_config)
|
306 |
+
|
307 |
+
# Merge models
|
308 |
+
merge_models()
|
309 |
+
|
310 |
+
# Create model card
|
311 |
+
create_model_card(yaml_config, model_name, USERNAME, license)
|
312 |
+
|
313 |
+
# Upload model
|
314 |
+
upload_model(api, USERNAME, model_name)
|
315 |
+
|
316 |
+
# Evaluate model on Runpod
|
317 |
+
create_pod(model_name, USERNAME)
|
318 |
+
|
319 |
+
command = ["git", "clone", "-q", "https://github.com/Weyaxi/scrape-open-llm-leaderboard"]
|
320 |
+
subprocess.run(command, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
|
321 |
+
|
322 |
+
command = ["pip", "install", "-r", "scrape-open-llm-leaderboard/requirements.txt"]
|
323 |
+
subprocess.run(command, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
|
324 |
+
|
325 |
+
command = ["git", "clone", "https://github.com/arcee-ai/mergekit.git"]
|
326 |
+
subprocess.run(command, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
|
327 |
+
|
328 |
+
command = ["pip", "install", "-e", "mergekit"]
|
329 |
+
subprocess.run(command, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
|
330 |
+
|
331 |
+
# Gradio interface
|
332 |
+
title = """
|
333 |
+
<div align="center">
|
334 |
+
<p style="font-size: 36px;">♾️ AutoMerger</p>
|
335 |
+
<p style="font-size: 20px;">📝 <a href="https://medium.com/towards-data-science/merge-large-language-models-with-mergekit-2118fb392b54">Model merging</a> • 💻 <a href="https://github.com/arcee-ai/mergekit">Mergekit</a> • 🐦 <a href="https://twitter.com/maximelabonne">Follow me on X</a></p>
|
336 |
+
<p><em>AutoMerger selects two 7B models on top of the Open LLM Leaderboard, combine them with a merge technique, and evaluate the resulting model.</em></p>
|
337 |
+
</div>
|
338 |
+
"""
|
339 |
+
# with gr.Blocks() as demo:
|
340 |
+
# gr.Markdown(title)
|
341 |
+
# demo.launch().launch(server_name="0.0.0.0")
|
342 |
+
|
343 |
+
print("Start AutoMerger...")
|
344 |
+
|
345 |
+
# Main loop
|
346 |
+
while True:
|
347 |
+
merge_loop()
|
348 |
+
time.sleep(WAIT_TIME)
|