import streamlit as st import pandas as pd import numpy as np import os import pickle import torch from grobidmonkey import reader from transformers import pipeline from transformers import BartTokenizer, BartModel, BartForConditionalGeneration from transformers import T5Tokenizer, T5ForConditionalGeneration from document import Document from BartSE import BARTAutoEncoder def save_uploaded_file(uploaded_file): file_path = os.path.join("./uploads", uploaded_file.name) os.makedirs("./uploads", exist_ok=True) # Create 'uploads' directory if it doesn't exist with open(file_path, "wb") as f: f.write(uploaded_file.getbuffer()) return file_path # Return the file path as a string st.title('Paper2Slides') st.subheader('Upload paper in pdf format') # col1, col2 = st.columns([3, 1]) # with col1: # uploaded_file = st.file_uploader("Choose a file") # with col2: # option = st.selectbox( # 'Select parsing method.', # ('monkey', 'x2d', 'lxml')) # if uploaded_file is not None: # st.write(uploaded_file.name) # bytes_data = uploaded_file.getvalue() # st.write(len(bytes_data), "bytes") # saved_file_path = save_uploaded_file(uploaded_file) # monkeyReader = reader.MonkeyReader(option) # outline = monkeyReader.readOutline(saved_file_path) # for pre, fill, node in outline: # st.write("%s%s" % (pre, node.name)) # # read paper content # essay = monkeyReader.readEssay(saved_file_path) # with st.status("Understanding paper..."): # Barttokenizer = BartTokenizer.from_pretrained('facebook/bart-large-cnn') # summ_model_path = 'com3dian/Bart-large-paper2slides-summarizer' # summarizor = BartForConditionalGeneration.from_pretrained(summ_model_path) # exp_model_path = 'com3dian/Bart-large-paper2slides-expander' # expandor = BartForConditionalGeneration.from_pretrained(exp_model_path) # device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # BartSE = BARTAutoEncoder(summarizor, summarizor, device) # del summarizor, expandor # document = Document(essay, Barttokenizer) # del Barttokenizer # length = document.merge(25, 30, BartSE, device) # with st.status("Generating slides..."): # summarizor = pipeline("summarization", model=summ_model_path, device = device) # summ_text = summarizor(document.segmentation['text'], max_length=100, min_length=10, do_sample=False) # summ_text = [text['summary_text'] for text in summ_text] # for summ in summ_text: # st.write(summ) with open('slides_text.pkl', 'rb') as file: summ_text = pickle.load(file) # Function to render HTML content def render_html(text): # Split text by periods sentences = text.split('.') # Create HTML list items list_items = "".join([f"